Role of Chemically Modified Tetracyclines in the Management of Periodontal Diseases: A Review

Drug Research ◽  
2017 ◽  
Vol 67 (05) ◽  
pp. 258-265 ◽  
Author(s):  
Archit Ghangurde ◽  
Kiran Ganji ◽  
Manohar Bhongade ◽  
Bhumika Sehdev

AbstractResearchers have found that Chemically Modified Tetracyclines (CMTs) act through multiple mechanisms, affecting several parameters of osteoclast function and consequently inhibit bone resorption by altering intracellular calcium concentration and interacting with the putative calcium receptor; decreasing ruffled border area; diminishing acid production; diminishing the secretion of lysosomal cysteine proteinases (cathepsins); inducing cell retraction by affecting podosomes; inhibiting osteoclast gelatinase activity; selectively inhibiting osteoclast ontogeny or development; and inducing apoptosis or programmed cell death of osteoclasts. Thus TCs/CMTs, as anti-resorptive drugs, may act similarly to bisphosphonates and primarily affect osteoclast function. Researchers have evaluated the influence of various chemically modified tetracyclines from CMT-1 to CMT-10 on collagenases and gelatinases through in vitro or animal studies and concluded that all the CMTs except CMT-5 inhibited periodontal breakdown through MMP inhibition in the following order of efficacy: CMT-8>CMT-1>CMT-3>CMT-4>CMT-7. Thus the non-antimicrobial actions of the chemically modified analogues of tetracyclines have shown remarkably better mechanisms to those of agents with established anti-inflammatory/antioxidant potential. These findings clarify the multi-faceted actions of tetracyclines which are unique amongst antimicrobials, with therapeutic applications in periodontal and metabolic diseases. Hence, the present review describes the role of chemically modified tetracyclines in the management of periodontal diseases.

2008 ◽  
Vol 2 (1) ◽  
pp. 5-12 ◽  
Author(s):  
M Soory

This review addresses the role of adjunctive tetracycline therapy in the management of periodontal diseases and its efficacy in reducing inflammatory burden, oxidative stress and its sequelae in patients with coexisting features of metabolic syndrome. Removal of the dimethylamine group at C4 of the tetracycline molecule reduces its antibiotic properties, enhancing its non-antimicrobial actions; this strategy has aided the development of several chemically modified tetracyclines such as minocycline and doxycycline, by altering different regions of the molecule for focused action on biological targets. Tetracyclines are effective in reducing inflammation by inhibiting matrix metalloproteinases, preventing excessive angiogenesis, inhibiting apoptosis and stimulating bone formation. There are important applications for tetracyclines in the management of diabetic, dyslipidaemic periodontal patients who smoke. The diverse mechanisms of action of tetracyclines in overcoming oxidative stress and enhancing matrix synthesis are discussed in this review.


1998 ◽  
Vol 12 (1) ◽  
pp. 86-93 ◽  
Author(s):  
S.A. Myers ◽  
R.G. Wolowacz

Collagen gels in vitro can be contracted by fibroblasts. The role of matrix metalloproteinases (MMPs) in the contraction of collagen lattices by human neonatal foreskin fibroblasts (HuFFs) was investigated in tissue culture media supplemented by various doses of known gelatinase inhibitors. Fluorescent assays with model gelatinase substrates and media conditioned by fibroblasts apparently confirmed the ability of chemically modified tetracyclines (CMTs) to act as inhibitors of MMP2, and zymography demonstrated that this was the major cell-derived MMP activity. There were no observable effects on the rate of contraction of attached FPCLs containing 6 x 104 HuFFs (passages 18-25) with either CMT-5 or CMT-2 at all concentrations tested (0-100 μg/mL). However, at greater than 20 μg/mL doxycycline and greater than 5 μg/mL CMT-3, FPCL contraction was completely abolished. Quantitative assessment of cell viability by means of the MTT assay in monolayer and qualitatively within the FPCLs with CalceinAM suggested that differences were not due to cytotoxic effects. Seeding FPCLs with lower-passage fibroblasts produced identical trends. These results may implicate the involvement of MMPs in the process of gel contraction, although tetracyclines have effects additional to their ability to inhibit MMPs directly.


2021 ◽  
Vol 22 (11) ◽  
pp. 5705
Author(s):  
Karolina Szewczyk-Golec ◽  
Marta Pawłowska ◽  
Roland Wesołowski ◽  
Marcin Wróblewski ◽  
Celestyna Mila-Kierzenkowska

Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
S. Memmert ◽  
A. Damanaki ◽  
A. V. B. Nogueira ◽  
S. Eick ◽  
M. Nokhbehsaim ◽  
...  

Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.


1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


Blood ◽  
2021 ◽  
Author(s):  
Charithani B Keragala ◽  
Robert L Medcalf

Plasminogen is an abundant plasma protein that exists in various zymogenic forms. Plasmin, the proteolytically active form of plasminogen, is known for its essential role in fibrinolysis. The therapeutic targeting of the fibrinolytic system to date has been for two purposes: to promote plasmin generation for thromboembolic conditions, or to stop plasmin to reduce bleeding. However, both plasmin and plasminogen serve other important functions, some of which are unrelated to fibrin removal. Indeed, for over 40 years, the anti-fibrinolytic agent, tranexamic acid, has been administered for its serendipitously discovered skin whitening properties. Plasmin also plays an important role in the removal of misfolded/aggregated proteins and can trigger other enzymatic cascades including complement. In addition, plasminogen, via binding to one of its dozen cell-surface receptors, can modulate cell behaviour and further influence immune and inflammatory processes. Plasminogen administration itself has been reported to improve thrombolysis and to accelerate wound repair. While many of these more recent findings have been derived from in vitro or animal studies, the use of anti-fibrinolytics to reduce bleeding in humans has revealed additional clinically relevant consequences, particularly in relation to reducing infection risk that is independent of its haemostatic effects. The finding that many viruses harness the host plasminogen to aid infectivity has suggested that anti-fibrinolytic agents may have anti-viral benefits. Here we review the broadening role of the plasminogen activating system in physiology and pathophysiology and how manipulation of this system may be harnessed for benefits unrelated to its conventional application in thrombosis and haemostasis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Bernardino Clavo ◽  
Norberto Santana-Rodríguez ◽  
Pedro Llontop ◽  
Dominga Gutiérrez ◽  
Gerardo Suárez ◽  
...  

Introduction. This article provides an overview of the potential use of ozone as an adjuvant during cancer treatment.Methods. We summarize the findings of the most relevant publications focused on this goal, and we include our related clinical experience.Results. Over several decades, prestigious journals have publishedin vitrostudies on the capacity of ozone to induce direct damage on tumor cells and, as well, to enhance the effects of radiotherapy and chemotherapy. Indirect effects have been demonstrated in animal models: immune modulation by ozone alone and sensitizing effect of radiotherapy by concurrent ozone administration. The effects of ozone in modifying hemoglobin dissociation curve, 2,3-diphosphoglycerate levels, locoregional blood flow, and tumor hypoxia provide additional support for potential beneficial effects during cancer treatment. Unfortunately, only a few clinical studies are available. Finally, we describe some works and our experience supporting the potential role of local ozone therapy in treating delayed healing after tumor resection, to avoid delays in commencing radiotherapy and chemotherapy.Conclusions.In vitroand animal studies, as well as isolated clinical reports, suggest the potential role of ozone as an adjuvant during radiotherapy and/or chemotherapy. However, further research, such as randomized clinical trials, is required to demonstrate its potential usefulness as an adjuvant therapeutic tool.


2019 ◽  
Vol 20 (14) ◽  
pp. 3395 ◽  
Author(s):  
Hermans ◽  
Lennep ◽  
van Daele ◽  
Bot

Mast cells are pluripotent leukocytes that reside in the mucosa and connective tissue. Recent studies show an increased prevalence of cardiovascular disease among patients with mastocytosis, which is a hematological disease that is characterized by the accumulation of mast cells due to clonal proliferation. This association suggests an important role for mast cells in cardiovascular disease. Indeed, the evidence establishing the contribution of mast cells to the development and progression of atherosclerosis is continually increasing. Mast cells may contribute to plaque formation by stimulating the formation of foam cells and causing a pro-inflammatory micro-environment. In addition, these cells are able to promote plaque instability by neo-vessel formation and also by inducing intraplaque hemorrhage. Furthermore, mast cells appear to stimulate the formation of fibrosis after a cardiac infarction. In this review, the available data on the role of mast cells in cardiovascular disease are summarized, containing both in vitro research and animal studies, followed by a discussion of human data on the association between cardiovascular morbidity and diseases in which mast cells are important: Kounis syndrome, mastocytosis and allergy.


2012 ◽  
Vol 7 (11) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
Akiko Kojima-Yuasa ◽  
Yohei Deguchi ◽  
Yotaro Konishi ◽  
Isao Matsui-Yuasa

1,5-Anhydro-D-fructose (1,5-AF) is a monosaccharide that shares a structural similarity to glucose. 1,5-AF is found in fungi, algae, Escherichia coli and rat liver and is produced by the degradation of starch and glycogen, which is catalyzed by the enzyme α-1,4-glucan lyase. However, the physiological role of 1,5-AF in mammalian tissues is not well understood. Here, we investigated the anti-obesity potential of 1,5-AF on adipogenesis in 3T3-L1 adipocytes. 1,5-AF caused a significant decrease in GPDH activity in 3T3-L1 preadipocytes and mature adipocytes without eliciting cytotoxicity, and inhibited cellular lipid accumulation through down-regulation of transcription factors such as PPARγ and C/EBPα. 1,5-AF also induced dose-dependent phosphorylation of AMP-activated protein kinase (AMPK), a cellular energy sensor. However, the total AMPK protein content remained unchanged. Furthermore, 1,5-AF increased the levels of reactive oxygen species, an important upstream signal for AMPK activation in 3T3-L1 adipocytes. Our results show that 1,5-AF exerts anti-obesity action in vitro and suggest that 1,5-AF is potentially a novel preventative agent for obesity and other metabolic diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Iwona Zwolak

Vanadium (V) in its inorganic forms is a toxic metal and a potent environmental and occupational pollutant and has been reported to induce toxic effects in animals and people. In vivo and in vitro data show that high levels of reactive oxygen species are often implicated in vanadium deleterious effects. Since many dietary (exogenous) antioxidants are known to upregulate the intrinsic antioxidant system and ameliorate oxidative stress-related disorders, this review evaluates their effectiveness in the treatment of vanadium-induced toxicity. Collected data, mostly from animal studies, suggest that dietary antioxidants including ascorbic acid, vitamin E, polyphenols, phytosterols, and extracts from medicinal plants can bring a beneficial effect in vanadium toxicity. These findings show potential preventive effects of dietary antioxidants on vanadium-induced oxidative stress, DNA damage, neurotoxicity, testicular toxicity, and kidney damage. The relevant mechanistic insights of these events are discussed. In summary, the results of studies on the role of dietary antioxidants in vanadium toxicology appear encouraging enough to merit further investigations.


Sign in / Sign up

Export Citation Format

Share Document