Development of a multifunctional surface analysis system based on a nanometer scale scanning electron beam: Combination of ultrahigh vacuum‐scanning electron microscopy, scanning reflection electron microscopy, Auger electron spectroscopy, and x‐ray photoelectron spectroscopy

1996 ◽  
Vol 67 (12) ◽  
pp. 4185-4190 ◽  
Author(s):  
Heiji Watanabe ◽  
Masakazu Ichikawa
1991 ◽  
Vol 249 ◽  
Author(s):  
Youming Xiao ◽  
Beng Jit Tan ◽  
Steven L. Suib ◽  
Francis S. Galasso

ABSTRACTCoating of SiC (BP-SIGMA) fibers with alumina by a sol-gel process did not cause degradation even after heating to 1000°C in air for 24 h. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and scanning electron microscopy (SEM ) methods were used to study the coating fiber interface.


1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


1997 ◽  
Vol 473 ◽  
Author(s):  
C. L. Kim ◽  
K. H. Kwon ◽  
S. J. Yu ◽  
H. J. Kim ◽  
E. G. Chang

ABSTRACTThe effect of grain boundary on the corrosion of Al(Cu 1%) etched using SiCl4/Cl2/He/CHF3 gas plasma has been evaluated with XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscopy) and AES (Auger electron spectroscopy). It was found with SEM that the surface of Al(Cu 1 %) mainly corroded at the grain boundary. Using AES point analysis, the cause of selective corrosion at the grain boundary of Al(Cu 1 %) has been investigated. The results of AES indicated that the contents of F and Cl have made a difference at the analyzed positions. This seems to result from the imperfect crystalline structure of Al(Cu 1%) grain boundary. It was also confirmed that F has passivated the Cl at the grain boundary. The SEM and XPS results implied that Cl incorporated in the grain boundary of polycrystalline Al(Cu 1%) film accelerated the corrosion and could not be easily removed by the subsequent SF6 plasma treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
A. I. Kovalev ◽  
D. L. Wainstein ◽  
A. Yu. Rashkovskiy ◽  
R. Gago ◽  
F. Soldera ◽  
...  

Transformations of the electronic structure in thin silver layers in metal-dielectric (TiAlN/Ag) multilayer nanocomposite were investigated by a set of electron spectroscopy techniques. Localization of the electronic states in the valence band and reduction of electron concentration in the conduction band was observed. This led to decreasing metallic properties of silver in the thin films. A critical layer thickness of 23.5 nm associated with the development of quantum effects was determined by X-ray photoelectron spectroscopy. Scanning Auger electron microscopy of characteristic energy losses provided images of plasmon localization in the Ag layers. The nonuniformity of plasmon intensities distribution near the metal-nitride interfaces was assessed experimentally.


Sign in / Sign up

Export Citation Format

Share Document