Nidogen-1 (NID1) as specific ligand in natural killer (NK) cells stimulated from advanced ovarian cancer: Immunotherapy review

2021 ◽  
Author(s):  
Sanya Khaerunnisa ◽  
Lady Feren Pangjaya ◽  
Nuzli Fahdia Mazfufah ◽  
Retno Lestari Budiman ◽  
Radiana Dhewayani Antarianto
Lab on a Chip ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 2317-2327 ◽  
Author(s):  
Saheli Sarkar ◽  
Wenjing Kang ◽  
Songyao Jiang ◽  
Kunpeng Li ◽  
Somak Ray ◽  
...  

Comparative proteomic profiling and development of convolution neural network algorithm for quantifying discrete target interaction by engineered NK cells in microfluidic droplets.


2019 ◽  
Vol 12 (03) ◽  
pp. 1941002 ◽  
Author(s):  
Shigao Huang ◽  
Chi Ian Fong ◽  
Mengze Xu ◽  
Bing-nan Han ◽  
Zhen Yuan ◽  
...  

To improve the efficacy of traditional chemotherapy and radiotherapy and reduce their serious side effects, further efforts need to be exerted to identify better cancer therapeutic options that are effective, affordable, and acceptable to patients. In this study, a novel theranostic agent was produced to perform synergetic cancer immunotherapy and phototherapy. The theranostic agent, named natural killer (NK) cells carrying indocyanine green loaded liposomes was synthesized NK cells with ICG nanoparticles to serve as the agent for a newly-established cancer treatment. It is expected that the developed synergistic therapy can pave a new avenue for improved efficacy of cancer theranostics.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuqing Cao ◽  
Xiaoyu Wang ◽  
Tianqiang Jin ◽  
Yu Tian ◽  
Chaoliu Dai ◽  
...  

Abstract Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK’s potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.


2020 ◽  
Vol 2 (1) ◽  
pp. 89-92
Author(s):  
Radiana Dhewayani Antarianto ◽  
◽  
Fransisca Dela Verna ◽  
Lady Feren Pangjaya ◽  
Sanya Khaerunnisa ◽  
...  

2020 ◽  
Author(s):  
Iñigo Terrén ◽  
Ane Orrantia ◽  
Alba Mosteiro ◽  
Joana Vitallé ◽  
Olatz Zenarruzabeitia ◽  
...  

ABSTRACTNatural Killer (NK) cells acquire memory-like properties following a brief stimulation with IL-12, IL-15 and IL-18. These IL-12/15/18-stimulated NK cells, also known as cytokine-induced memory-like (CIML) NK cells, have been revealed as a powerful tool in cancer immunotherapy due to their persistence in the host and their increased effector functions. Several studies have shown that NK cells modulate their metabolism in response to cytokine-stimulation and other stimuli, suggesting that there is a link between metabolism and cellular functions. In this paper, we have analyzed metabolic changes associated to IL-12/15/18-stimulation and the relevance of glycolytic pathway for NK cell effector functions. We have found that CIML NK cells are able to retain increased glycolytic machinery seven days after cytokine withdrawal. Furthermore, we found that glycolytic inhibition with 2-DG is stimuli-dependent and that differently affects to distinct effector functions. These findings may have implications in the design of NK cell-based cancer immunotherapies.


2012 ◽  
Vol 67 (4) ◽  
pp. 60-64
Author(s):  
I. O. Chikileva ◽  
I. Zh. Shubina ◽  
E. V. Kiselevskii

One of the common arguments against cancer immunotherapy based on natural killer (NK) cells activated in the presence of interleukin-2 (IL-2) is the probability of the activation of regulatory T cells (Tregs) by IL-2 besides NK cells. Thus, we have monitored numbers of FoxP3+CD4+CD25+ T cells in the samples of healthy volunteers’ peripheral blood mononuclear cells (PBMCs) cultured with or without IL-2. We observed marked increase in the percentages of the CD4+CD25+ T cells in the presence of IL-2. Proportions of Foxp3+CD4+CD25+ T cells feebly increased, remained on the same level or even decreased compared to PBMCs cultured without exogenous IL-2. Based on the absence of FoxP3 expression, most of the CD4+CD25+ T cells purified from IL-2 activated PBMCs were not Tregs, but activated Th cells. Moreover, the addition of the purified supposed Tregs to samples of activated NK cells never inhibited their cytotoxic reactions. 


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ahmet Yilmaz ◽  
Hanwei Cui ◽  
Michael A. Caligiuri ◽  
Jianhua Yu

AbstractNatural killer (NK) cells are a critical component of the innate immune system. Chimeric antigen receptors (CARs) re-direct NK cells toward tumor cells carrying corresponding antigens, creating major opportunities in the fight against cancer. CAR NK cells have the potential for use as universal CAR cells without the need for human leukocyte antigen matching or prior exposure to tumor-associated antigens. Exciting data from recent clinical trials have renewed interest in the field of cancer immunotherapy due to the potential of CAR NK cells in the production of “off-the-shelf” anti-cancer immunotherapeutic products. Here, we provide an up-to-date comprehensive overview of the recent advancements in key areas of CAR NK cell research and identify under-investigated research areas. We summarize improvements in CAR design and structure, advantages and disadvantages of using CAR NK cells as an alternative to CAR T cell therapy, and list sources to obtain NK cells. In addition, we provide a list of tumor-associated antigens targeted by CAR NK cells and detail challenges in expanding and transducing NK cells for CAR production. We additionally discuss barriers to effective treatment and suggest solutions to improve CAR NK cell function, proliferation, persistence, therapeutic effectiveness, and safety in solid and liquid tumors.


2019 ◽  
Vol 3 (1) ◽  
pp. 77-103 ◽  
Author(s):  
Jeffrey S. Miller ◽  
Lewis L. Lanier

Natural killer (NK) cells have evolved to complement T and B cells in host defense against pathogens and cancer. They recognize infected cells and tumors using a sophisticated array of activating, costimulatory, and inhibitory receptors that are expressed on NK cell subsets to create extensive functional diversity. NK cells can be targeted to kill with exquisite antigen specificity by antibody-dependent cellular cytotoxicity. NK and T cells share many of the costimulatory and inhibitory receptors that are currently under evaluation in the clinic for cancer immunotherapy. As with T cells, genetic engineering is being employed to modify NK cells to specifically target them to tumors and to enhance their effector functions. As the selective pressures exerted by immunotherapies to augment CD8+T cell responses may result in loss of MHC class I, NK cells may provide an important fail-safe to eliminate these tumors by their capacity to eliminate tumors that are “missing self.”


2021 ◽  
Vol 12 ◽  
Author(s):  
Kari A. Shaver ◽  
Tayler J. Croom-Perez ◽  
Alicja J. Copik

Cancer immunotherapy is a highly successful and rapidly evolving treatment modality that works by augmenting the body’s own immune system. While various immune stimulation strategies such as PD-1/PD-L1 or CTLA-4 checkpoint blockade result in robust responses, even in patients with advanced cancers, the overall response rate is low. While immune checkpoint inhibitors are known to enhance cytotoxic T cells’ antitumor response, current evidence suggests that immune responses independent of cytotoxic T cells, such as Natural Killer (NK) cells, play crucial role in the efficacy of immunotherapeutic interventions. NK cells hold a distinct role in potentiating the innate immune response and activating the adaptive immune system. This review highlights the importance of the early actions of the NK cell response and the pivotal role NK cells hold in priming the immune system and setting the stage for successful response to cancer immunotherapy. Yet, in many patients the NK cell compartment is compromised thus lowering the chances of successful outcomes of many immunotherapies. An overview of mechanisms that can drive NK cell dysfunction and hinder immunotherapy success is provided. Rather than relying on the likely dysfunctional endogenous NK cells to work with immunotherapies, adoptive allogeneic NK cell therapies provide a viable solution to increase response to immunotherapies. This review highlights the advances made in development of NK cell therapeutics for clinical application with evidence supporting their combinatorial application with other immune-oncology approaches to improve outcomes of immunotherapies.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Sandro Matosevic

Natural killer (NK) cells are powerful immune effectors whose antitumor activity is regulated through a sophisticated network of activating and inhibitory receptors. As effectors of cancer immunotherapy, NK cells are attractive as they do not attack healthy self-tissues nor do they induce T cell-driven inflammatory cytokine storm, enabling their use as allogeneic adoptive cellular therapies. Clinical responses to adoptive NK-based immunotherapy have been thwarted, however, by the profound immunosuppression induced by the tumor microenvironment, particularly severe in the context of solid tumors. In addition, the short postinfusion persistence of NK cellsin vivohas limited their clinical efficacy. Enhancing the antitumor immunity of NK cells through genetic engineering has been fueled by the promise that impaired cytotoxic functionality can be restored or augmented with the use of synthetic genetic approaches. Alongside expressing chimeric antigen receptors to overcome immune escape by cancer cells, enhance their recognition, and mediate their killing, NK cells have been genetically modified to enhance their persistencein vivoby the expression of cytokines such as IL-15, avoid functional and metabolic tumor microenvironment suppression, or improve their homing ability, enabling enhanced targeting of solid tumors. However, NK cells are notoriously adverse to endogenous gene uptake, resulting in low gene uptake and transgene expression with many vector systems. Though viral vectors have achieved the highest gene transfer efficiencies with NK cells, nonviral vectors and gene transfer approaches—electroporation, lipofection, nanoparticles, and trogocytosis—are emerging. And while the use of NK cell lines has achieved improved gene transfer efficiencies particularly with viral vectors, challenges with primary NK cells remain. Here, we discuss the genetic engineering of NK cells as they relate to NK immunobiology within the context of cancer immunotherapy, highlighting the most recent breakthroughs in viral vectors and nonviral approaches aimed at genetic reprogramming of NK cells for improved adoptive immunotherapy of cancer, and, finally, address their clinical status.


Sign in / Sign up

Export Citation Format

Share Document