THE EROMANGA BASIN

1989 ◽  
Vol 29 (1) ◽  
pp. 379
Author(s):  
H.R.B. Wecker

The Eromanga Basin, encompassing an area of approximately 1 million km2 in Central Australia, is a broad intracratonic downwarp containing up to 3000 m of Middle Triassic to Late Cretaceous sediments.Syndepositional tectonic activity within the basin was minimal and the main depocentres largely coincide with those of the preceding Permo- Triassic basins. Several Tertiary structuring phases, particularly in the Early Tertiary, have resulted in uplift and erosion of the Eromanga Basin section along its eastern margin, and the development of broad, northwesterly- to northeasterly- trending anticlines within the basin. In some instances, high angle faults are associated with these features. This structural deformation occurred in an extensional regime and was strongly influenced by the underlying Palaeozoic structural grain.The Eromanga Basin section is composed of a basal, dominantly non- marine, fluvial and lacustrine sequence overlain by shallow marine deposits which are in turn overlain by another fluvial, lacustrine and coal- swamp sequence. The basal sequence is the principal zone of interest to petroleum exploration. It contains the main reservoirs and potential source rocks and hosts all commercial hydrocarbon accumulations found to date. While the bulk of discovered reserves are in structural traps, a significant stratigraphic influence has been noted in a number of commercially significant hydrocarbon accumulations.All major discoveries have been in the central Eromanga Basin region overlying and adjacent to the hydrocarbon- productive, Permo- Triassic Cooper Basin. The mature Permian section is believed to have contributed a significant proportion of the Eromanga- reservoired hydrocarbons. Accordingly, structural timing and migration pathways within the Permian and Middle Triassic- Jurassic sections are important factors for exploration in the central Eromanga Basin region. Elsewhere, in less thermally- mature areas, hydrocarbon generation post- dates Tertiary structuring and thus exploration success will relate primarily to source- rock quality, maturity and drainage factors.Although exploration in the basin has proceeded spasmodically for over 50 years, it has only been in the last decade that significant exploration activity has occurred. Over this recent period, some 450 exploration wells and 140 000 km of seismic acquisition have been completed in the pursuit of Eromanga Basin oil accumulations. This has resulted in the discovery of 227 oil and gas pools totalling an original in- place proved and probable (OOIP) resource of 360 MMSTB oil and 140 BCF gas.Though pool sizes are generally small, up to 5 MMSTB OOIP, the attractiveness of Eromanga exploration lies in the propensity for stacked pools at relatively shallow depths, moderate to high reservoir productivity, and established infrastructure with pipelines to coastal centres. Coupled with improved exploration techniques and increasing knowledge of the basinal geology, these attributes will undoubtedly ensure the Eromanga Basin continues to be a prime onshore area for future petroleum exploration in Australia.

1982 ◽  
Vol 22 (1) ◽  
pp. 5
Author(s):  
A. R. Martin ◽  
J. D. Saxby

The geology and exploration history of the Triassic-Cretaceous Clarence-Moreton Basin are reviewed. Consideration of new geochemical data ('Rock-Eval', vitrinite reflectance, gas chromatography of extracts, organic carbon and elemental analysis of coals and kerogens) gives further insights into the hydrocarbon potential of the basin. Although organic-rich rocks are relatively abundant, most source rocks that have achieved the levels of maturation necessary for hydrocarbon generation are gas-prone. The exinite-rich oil-prone Walloon Coal Measures are in most parts relatively immature. Some restraints on migration pathways are evident and igneous and tectonic events may have disturbed potentially well-sealed traps. Further exploration is warranted, even though the basin appears gas-prone and the overall prospects for hydrocarbons are only fair. The most promising areas seem to be west of Toowoomba for oil and the Clarence Syncline for gas.


1984 ◽  
Vol 24 (1) ◽  
pp. 393 ◽  
Author(s):  
V. L. Passmore ◽  
M. J. Sexton

The Adavale Basin of southwestern Queensland consists of a main depression and several isolated synclinal extensions, traditionally referred to as troughs. The depressions and troughs are erosional remnants of a once more extensive Devonian depositional basin, and are now completely buried by sediments of the overlying Cooper, Galilee and Eromanga Basins. Geophysical and drilling investigations undertaken since 1959 are the only source of information on the Adavale Basin. A single sub-economic discovery of dry gas at Gilmore and a few shows of oil and gas are the only hydrocarbons located in the basin to date.In 1980, the Bureau of Mineral Resources in cooperation with the Geological Survey of Queensland commenced a major, multidisciplinary investigation of the basins in southwestern Queensland. Four long (> 200 km) seismic lines from this study over the Adavale Basin region and geochemical data from 20 wells were used to interpret the Adavale Basin's development and its present hydrocarbon potential.The new seismic reflection data allow the well-explored main depression to be correlated with the detached troughs, some of which have little or no well information. The BMR seismic data show that these troughs were previously part of one large depositional basin in the Devonian, the depocentre of which lay east of a north-trending hingeline. Structural features and Devonian depositional limits and patterns have been modified from earlier interpretations as a result of the new seismic coverage. The maximum sediment thickness is re-interpreted to be 8500 m, considerably thicker than previous interpretation.recognised. The first one, a diachronous Middle Devonian unconformity, is the most extensive, and reflects the mobility of the basement during the basin's early history. The second unconformity within the Late Devonian Buckabie Formation reveals that there were two phases of deformation of the basin sediments.The geochemical results reported in this study show that most of the Adavale Basin sediments have very low concentrations of organic carbon and hydrocarbon fractions. Maturity profiles indicate that the best source rocks of the basin are now in the mature stage for hydrocarbon generation. However, at Gilmore and in the Cooladdi Trough, they have reached the dry gas stage. The maturity data provide additional evidence for the marked break in deposition and significant erosion during the Middle Devonian recognised on the seismic records, and extend the limits of this sedimentary break into the northern part of the main depression.Hydrocarbon potential of the Adavale Basin is fair to poor. In the eastern part of the basin, where most of the data are available, the prospects are better for gas than oil. Oil prospectivity may be improved in any exinite-rich areas that exist farther west, where palaeo-temperatures were lower.


1983 ◽  
Vol 23 (1) ◽  
pp. 75 ◽  
Author(s):  
A. J. Kantsler ◽  
T. J. C. Prudence ◽  
A. C. Cook ◽  
M. Zwigulis

The Cooper Basin is a complex intracratonic basin containing a Permian-Triassic succession which is uncomformably overlain by Jurassic-Cretaceous sediments of the Eromanga Basin. Abundant inertinite-rich humic source rocks in the Permian coal measures sequence have sourced some 3TCF recoverable gas and 300 million barrels recoverable natural gas liquids and oil found to date in Permian sandstones. Locally developed vitrinitic and exinite-rich humic source rocks in the Jurassic to Lower Cretaceous section have, together with Permian source rocks, contributed to a further 60 million barrels of recoverable oil found in fluvial Jurassic-Cretaceous sandstones.Maturity trends vary across the basin in response to a complex thermal history, resulting in a present-day geothermal gradient which ranges from 3.0°C/100 m to 6.0°C/100 m. Permian source rocks are generally mature to postmature for oil generation, and oil/condensate-prone and dry gas-prone kitchens exist in separate depositional troughs. Jurassic source rocks generally range from immature to mature but are postmature in the central Nappamerri Trough. The Nappamerri Trough is considered to have been the most prolific Jurassic oil kitchen because of the mature character of the crudes found in Jurassic reservoirs around its flanks.Outside the central Nappamerri Trough, maturation modelling studies show that most hydrocarbon generation followed rapid subsidence during the Cenomanian. Most syndepositional Permian structures are favourably located in time and space to receive this hydrocarbon charge. Late formed structures (Mid-Late Tertiary) are less favourably situated and are rarely filled to spill point.The high CO2 contents of the Permian gas (up to 50 percent) may be related to maturation of the humic Permian source rocks and thermal degradation of Permian crudes. However, the high δ13C of the CO2 (av. −6.9 percent) suggests some mixing with CO2 derived from thermal breakdown of carbonates within both the prospective sequence and economic basement.


2020 ◽  
Author(s):  
Qian Ding ◽  
Zhiliang He ◽  
Dongya Zhu

<p>Deep and ultra-deep carbonate reservoir is an important area of petroleum exploration. However, the prerequisite for predicting high quality deep ultra-deep carbonate reservoirs lays on the mechanism of carbonate dissolution/precipitation. It is optimal to perform hydrocarbon generation-dissolution simulation experiments to clarify if burial dissolution could improve the physical properties of carbonate reservoirs, while quantitatively and qualitatively describe the co-evolution process of source rock and carbonate reservoirs in deep layers. In this study, a series of experiments were conducted with the limestone from the Ordovician Yingshan Formation in the Tarim Basin, and the low maturity source rock from Yunnan Luquan, with a self-designed hydrocarbon generation-dissolution simulation equipment. The controlling factors accounted for the alteration of carbonate reservoirs and dissolution modification process by hydrocarbon cracking fluid under deep burial environments were investigated by petrographic and geochemical analytical methods. In the meantime, the transformation mechanism of surrounding rocks in carbonate reservoirs during hydrocarbon generation process of source rock was explored. The results showed that: in the burial stage, organic acid, CO<sub>2</sub> and other acidic fluids associated with thermal evolution of deep source rocks could dissolve carbonate reservoirs, expand pore space, and improve porosity. Dissolution would decrease with the increasing burial depth. Whether the fluid could improve reservoir physical properties largely depends on calcium carbonate saturation, fluid velocity, water/rock ratio, original pore structure etc. This study could further contribute to the prediction of high-quality carbonate reservoirs in deep and ultra-deep layers.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Said Keshta ◽  
Farouk J. Metwalli ◽  
H. S. Al Arabi

Abu Madi/El Qar'a is a giant field located in the north eastern part of Nile Delta and is an important hydrocarbon province in Egypt, but the origin of hydrocarbons and their migration are not fully understood. In this paper, organic matter content, type, and maturity of source rocks have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. Modeling of the empirical data of source rock suggests that the Abu Madi formation entered the oil in the middle to upper Miocene, while the Sidi Salem formation entered the oil window in the lower Miocene. Charge risks increase in the deeper basin megasequences in which migration hydrocarbons must traverse the basin updip. The migration pathways were principally lateral ramps and faults which enabled migration into the shallower middle to upper Miocene reservoirs. Basin modeling that incorporated an analysis of the petroleum system in the Abu Madi/El Qar'a field can help guide the next exploration phase, while oil exploration is now focused along post-late Miocene migration paths. These results suggest that deeper sections may have reservoirs charged with significant unrealized gas potential.


2020 ◽  
Author(s):  
Gábor Tari ◽  
Didier Arbouille ◽  
Zsolt Schléder ◽  
Tamás Tóth

Abstract. The concept of structural inversion was introduced in the early 1980s. By definition, an inversion structure forms when a pre-existing extensional (or transtensional) fault controlling a hangingwall basin containing a syn-rift or passive fill sequence subsequently undergoes compression (or transpression) producing partial (or total) extrusion of the basin fill. Inverted structures provide traps for petroleum exploration, typically four-way structural closures. As to the degree of inversion, based on large number of worldwide examples seen in various basins, the most preferred petroleum exploration targets are mild to moderate inversional structures, defined by the location of the null-points. In these instances, the closures have a relatively small vertical amplitude, but simple in a map-view sense and well imaged on seismic reflection data. Also, the closures typically cluster above the extensional depocentres which tend to contain source rocks providing petroleum charge during and after the inversion. Cases for strong or total inversion are generally not that common and typically are not considered as ideal exploration prospects, mostly due to breaching and seismic imaging challenges associated with the trap(s) formed early on in the process of inversion. Also, migration may become tortuous due to the structural complexity or the source rock units may be uplifted above the hydrocarbon generation window effectively terminating the charge once the inversion occurred. For any particular structure the evidence for inversion is typically provided by subsurface data sets such as reflection seismic and well data. However, in many cases the deeper segments of the structure are either poorly imaged by the seismic data and/or have not been penetrated by exploration wells. In these cases the interpretation of any given structure in terms of inversion has to rely on the regional understanding of the basin evolution with evidence for an early phase of substantial crustal extension by normal faulting.


2003 ◽  
Vol 43 (1) ◽  
pp. 433 ◽  
Author(s):  
I. Deighton ◽  
J.J. Draper ◽  
A.J. Hill ◽  
C.J. Boreham

The aim of the National Geoscience Mapping Accord Cooper-Eromanga Basins Project was to develop a quantitative petroleum generation model for the Cooper and Eromanga Basins by delineating basin fill, thermal history and generation potential of key stratigraphic intervals. Bio- and lithostratigraphic frameworks were developed that were uniform across state boundaries. Similarly cross-border seismic horizon maps were prepared for the C horizon (top Cadna-owie Formation), P horizon (top Patchawarra Formation) and Z horizon (base Eromanga/Cooper Basins). Derivative maps, such as isopach maps, were prepared from the seismic horizon maps.Burial geohistory plots were constructed using standard decompaction techniques, a fluctuating sea level and palaeo-waterdepths. Using terrestrial compaction and a palaeo-elevation for the Winton Formation, tectonic subsidence during the Winton Formation deposition and erosion is the same as the background Eromanga Basin trend—this differs significantly from previous studies which attributed apparently rapid deposition of the Winton Formation to basement subsidence. A dynamic topography model explains many of the features of basin history during the Cretaceous. Palaeo-temperature modelling showed a high heatflow peak from 90–85 Ma. The origin of this peak is unknown. There is also a peak over the last two–five million years.Expulsion maps were prepared for the source rock units studied. In preparing these maps the following assumptions were made:expulsion is proportional to maturity and source rock richness;maturity is proportional to peak temperature; andpeak temperature is proportional to palaeo-heatflow and palaeo-burial.The geohistory modelling involved 111 control points. The major expulsion is in the mid-Cretaceous with minor amounts in the late Tertiary. Maturity maps were prepared by draping seismic structure over maturity values at control points. Draping of maturity maps over expulsion values at the control points was used to produce expulsion maps. Hydrocarbon generation was calculated using a composite kerogen kinetic model. Volumes generated are theoretically large, up to 120 BBL m2 of kitchen area at Tirrawarra North. Maps were prepared for the Patchawarra and Toolachee Formations in the Cooper Basin and the Birkhead and Poolowanna Formations in the Eromanga Basins. In addition, maps were prepared for Tertiary expulsion. The Permian units represent the dominant source as Jurassic source rocks have only generated in the deepest parts of the Eromanga Basin.


1993 ◽  
Vol 33 (1) ◽  
pp. 138
Author(s):  
Paul Lipski

The tectonic and depositional histories of the Bedout Sub-basin are closely related to more widely explored areas of the southern North West Shelf, i.e. the Barrow and Dampier Sub-basins. The Mesozoic Bedout Sub-basin onlaps and overlies the Palaeozoic offshore Canning Basin sequence. Four distinct tectonic regimes characterised the Triassic, Early to Late Jurassic, Late Jurassic to Late Cretaceous, and Tertiary to present:During the Triassic, the Bedout Sub-basin was part of a broad intracratonic downwarp that also encompassed the Barrow, Dampier and Beagle Sub-basins. A thick sequence of Locker Shale and Upper and Lower Keraudren Formations (Mungaroo Formation equivalent) was deposited.During the Jurassic rifting phase, the Bedout Sub-basin was a subsiding rim basin, landward of the uplifted rift margin. Sedimentation was dominated by a thick sequence of fluviodeltaic to marginal marine deposits.In the post-break-up phase from the Callovian to latest Cretaceous, a transgressive regime resulted in deep open marine conditions with widespread claystone and minor carbonate deposition over the southern North West Shelf.Through the Tertiary to the present, shallow shelf conditions prevailed and sedimentation was dominated by a thick prograding carbonate wedge.Hydrocarbon source is provided by a thick sequence of Triassic Locker Shale and Lower Keraudren Formation. The Locker Shale is presently mature for hydrocarbon generation over most of the Bedout Sub-basin and has the potential to generate both oil and gas. The Lower Keraudren Formation is a mature source mainly for gas/condensate in deeper sections of the sub-basin. Jurassic marine claystones, which represent a prolific source in the Barrow and Dampier Sub-basins, are not present in the Bedout Sub-basin.Reservoir rocks exist in the Triassic and Jurassic sections. However, gentle Jurassic rim basin tectonic activity has resulted in minor faulting compared to the adjacent rift. This has limited migration pathways from Triassic source to Jurassic reservoirs. The primary reservoir objectives are sandstones of the Triassic Upper and Lower Keraudren Formations.Although large structural traps are uncommon, there is considerable potential to host large hydrocarbon accumulations in stratigraphic traps. A giant prospect involving the onlap of the Triassic sequence has been identified in the eastern Bedout Sub-basin. Pursuit of this play should accelerate exploration in this sparsely drilled area.


2013 ◽  
Vol 690-693 ◽  
pp. 3549-3552
Author(s):  
Hui Shi ◽  
Hui Li

This paper is aimed to find out the main reason of late accumulation of Kunbei area in Qaidam Basin using geochemistry and seismic data and to provide scientific evidence to the potential petroleum exploration in this area. Reservoirs in Kunbei fault terrace zone originate from petreoleum generated by source rocks of E32 in Zhahaquan depression after N23(about 5.2Ma), which means a charcteristic of hysteretic hydrocarbon generation. Brine inclusions shows two hydrocarbon charging periods.The first charging most likely happens at N1 and the second begins at N21,continuing to Q.Two deformaton stages exist in the study area due to the Tibet Plateau uplifting. The accumulations of first stage have been damaged after Middle N1. The reservoirs of Kunbei zone at present are almost orignated from E32 in depression. Above all,the primary cause of late accumulation is due to long-distance effects of the Tibet Plateau uplifting.


2012 ◽  
Vol 622-623 ◽  
pp. 1642-1645
Author(s):  
Zong Lin Xiao ◽  
Qing Qing Hao ◽  
Zhong Min Shen

The Tarim basin is an important petroleum basin in China, and the Cambrian strata are the major source rock successions in the basin. Integrated the source rock depositional and structural history with its geochemical and thermal parameters, this paper simulates the evolution of the Cambrian source rocks with the software Basinview. The simulation result shows that the main hydrocarbon-generation centers of the Manjiaer sag in the Tabei depression and the Tangguzibasi sag in the Southwest depression are characterized by their early hydrocarbon generation, and in the late Ordovician depositional age, they reached dry gas stage. The Kuqa and Southwest depressions developed in the Cenozoic foreland basins made the Cambrian source rocks mature rapidly in the Cenozoic period. The source rock maturity in the Tarim basin now is characterized by high in the east and west and low in the middle, and most of the area is in the over-mature stage in the present. This study can provide available maturity data for the next petroleum exploration work.


Sign in / Sign up

Export Citation Format

Share Document