scholarly journals Reducing in vitro rumen methanogenesis for two contrasting diets using a series of inclusion rates of different additives

2014 ◽  
Vol 54 (2) ◽  
pp. 141 ◽  
Author(s):  
M. O'Brien ◽  
A. Navarro-Villa ◽  
P. J. Purcell ◽  
T. M. Boland ◽  
P. O'Kiely

Eleven individual additives were incubated with either perennial ryegrass or with grass silage+barley grain (50 : 50) and the in vitro methane output was assessed using the gas production technique (GPT). Additives were: fatty acids (lauric, oleic, linoleic and linolenic acids), halogenated methane analogues (bromoethanesulfonate and bromochloromethane), pyromellitic diimide, statins (mevastatin and lovastatin), a probiotic (Saccharomyces cerevisiae) and an unsaturated dicarboxylic acid (fumaric acid). Each additive was included at a range of concentrations. Effects on methane output per gram of feed dry matter (DM) incubated (CH4/DMi) and disappeared (CH4/DMd), as well as other fermentation variables, were evaluated after 24 h of incubation. The addition of increased concentrations of individual fatty acids, bromoethanesulfonate and pyromellitic diimide caused a dose-dependent decline in methane output (CH4/DMi, CH4/DMd), when incubated with either perennial ryegrass or grass silage+barley grain. No methane output was detected for either feed with the addition of ≥5 µM bromochloromethane. The statins were ineffective inhibitors of methane output regardless of feed type. For perennial ryegrass, S. cerevisiae caused a dose-dependent decline in CH4/DMd and fumaric acid a dose-dependent decline in CH4/DMi and CH4/DMd. The effectiveness of lauric, oleic, linoleic and linolenic acids and bromoethanesulfonate to reduce methane output was more pronounced when incubated with grass silage+barley grain than with perennial ryegrass, and therefore the type of feed is an important component for any future in vitro and in vivo studies to be undertaken with these additives. Thus, incorporating different feed types in the initial in vitro screening protocols of all new additives is recommended.

2017 ◽  
Vol 17 (2) ◽  
pp. 491-502 ◽  
Author(s):  
Wisam S. Al-Jumaili ◽  
Yong M. Goh ◽  
Saied Jafari ◽  
Mohamed A. Rajion ◽  
Mohamed F. Jahromi ◽  
...  

Abstract An in vitro gas production technique, using rumen fluid from four Kacang × Boer crossbred adult goats was used to study the effects of commercial tannic acid (TA, a hydrolysable tannin) on methanogenesis, fatty acid composition and biohydrogenation (BH) of C18 polyunsaturated fatty acids (PUFA) in the rumen. Treatments were control (CON, 50% alfalfa hay (AH) + 50% concentrate), 25 mg TA/250 mgDM (LTA, low TA) and 50 mg TA/250 mgDM (HTA, High TA), which were mixed with 30 mL of buffered rumen fluid and incubated for 24 h. The study revealed that TA supplementation had no negative effect on rumen fermentation parameters such as pH, NH3N, acetic/propionic ratio and total volatile fatty acid (tVFA). Methane (CH4) production (mL/250 mg DM) decreased (P<0.05) with increasing levels of TA. Greatest CH4 reduction (%) was recorded for MTA (20.30%) and LTA (13.00%) compared with CON. Supplementation of the diet with TA did not affect the rate of rumen BH (%) of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), C18:3n-3 (linolenic acid; LNA) and the concentration of fatty acids after 24 h of in vitro incubation. Based on this study, the addition of TA in vitro reduced rumen methanogenesis without negative effect of rumen fermentation characteristics, but in vivo studies need to be performed to determine if concentrations that inhibit methane are below toxic levels.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2016 ◽  
Vol 94 (7) ◽  
pp. 788-796 ◽  
Author(s):  
Bhawana Gupta ◽  
Sabyasachi Chakraborty ◽  
Soumya Saha ◽  
Sunita Gulabsingh Chandel ◽  
Atul Kumar Baranwal ◽  
...  

Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 μmol/L and 6.4 μmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.


1998 ◽  
Vol 22 ◽  
pp. 217-217
Author(s):  
D. M. Harris ◽  
D. E. Beever

The pressure transducer technique of Theodorou et al. (1984) is becoming of increasing importance in food evaluation. The main advantage over end-point procedures is the collection of kinetic data on a food. Previously such data were only obtained by sequential sacrifice or in situ techniques. Earlier work (Harris, 1996) showed that kinetics in the early stages of the incubation may not accurately simulate the processes occurring in vivo and this led to the use of a priming technique when the microbial innocula is acclimatized for 24 h to a priming food similar to the basal diet of the donor animal. This work investigates the effect of the length of priming on fermentation characteristics of two foods.Samples of barley grain and straw were ground through a 1-mm screen and a priming food of grass silage and concentrates prepared according to the method of Harris (1996). Gas production was determined from the barley grain and straw using bovine rumen liquor after exposing the microbial population to the priming food for 0 (unprimed), 6, 12, or 24 h. Gas volumes were recorded manually and the blank corrected volumes fitted to the equation of France et al. (1993).


2009 ◽  
Vol 44 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Inger Skånberg ◽  
Karl Olof Borg ◽  
Erik Fellenius ◽  
Kurt-Jürgen Hoffmann ◽  
Christer Bahr ◽  
...  

2021 ◽  
Vol 30 ◽  
pp. 096368972110453
Author(s):  
Wen-Cheng Lo ◽  
Chi-Sheng Chiou ◽  
Feng-Chou Tsai ◽  
Chun-Hao Chan ◽  
Samantha Mao ◽  
...  

Apart from aging process, adult intervertebral disc (IVD) undergoes various degenerative processes. However, the nicotine has not been well identified as a contributing etiology. According to a few studies, nicotine ingestion through smoking, air or clothing may significantly accumulate in active as well as passive smokers. Since nicotine has been demonstrated to adversely impact various physiological processes, such as sympathetic nervous system, leading to impaired vasculature and cellular apoptosis, we aimed to investigate whether nicotine could induce IVD degeneration. In particular, we evaluated dose-dependent impact of nicotine in vitro to simulate its chronic accumulation, which was later treated by platelet-derived biomaterials (PDB). Further, during in vivo studies, mice were subcutaneously administered with nicotine to examine IVD-associated pathologic changes. The results revealed that nicotine could significantly reduce chondrocytes and chondrogenic indicators (Sox, Col II and aggrecan). Mice with nicotine treatment also exhibited malformed IVD structure with decreased Col II as well as proteoglycans, which was significantly increased after PDB administration for 4 weeks. Mechanistically, PDB significantly restored the levels of IGF-1 signaling proteins, particularly pIGF-1 R, pAKT, and IRS-1, modulating ECM synthesis by chondrocytes. Conclusively, the PDB impart reparative and tissue regenerative processes by inhibiting nicotine-initiated IVD degeneration, through regulating IGF-1/AKT/IRS-1 signaling axis.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9909
Author(s):  
Carol Haddoub ◽  
Mohamad Rima ◽  
Sandrine Heurtebise ◽  
Myriam Lawand ◽  
Dania Jundi ◽  
...  

Background Montivipera bornmuelleri’s venom has shown immunomodulation of cytokines release in mice and selective cytotoxicity on cancer cells in a dose-dependent manner, highlighting an anticancer potential. Here, we extend these findings by elucidating the sensitivity of murine B16 skin melanoma and 3-MCA-induced murine fibrosarcoma cell lines to M. bornmuelleri’s venom and its effect on tumor growth in vivo. Methods The toxicity of the venom on B16 and MCA cells was assessed using flow cytometry and xCELLigence assays. For in vivo testing, tumor growth was followed in mice after intratumoral venom injection. Results The venom toxicity showed a dose-dependent cell death on both B16 and MCA cells. Interestingly, overexpression of ovalbumin increased the sensitivity of the cells to the venom. However, the venom was not able to eradicate induced-tumor growth when injected at 100 µg/kg. Our study demonstrates a cytotoxic effect of M. bornmuelleri’s venom in vitro which, however, does not translate to an anticancer action in vivo.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3932-3932
Author(s):  
Mary Faris ◽  
Uriel M Malyankar ◽  
Qingping Zeng ◽  
Gary A Flynn ◽  
Gerold Feuer ◽  
...  

Abstract Abstract 3932 ITK (Interluekin-2 Inducible Tyrosine Kinase) is a member of the TEC family of intracellular protein tyrosine kinases. ITK is highly expressed in T cells and NK cells, with expression detected in mast cells. ITK plays a key role in several aspects of T cell biology, including T cell development, differentiation, migration, proliferation and activation. The function of ITK in immunity and allergy is well documented. T cells from ITK knock out mice show several developmental and functional defects, including defective signal transduction, altered CD4+ to CD8+ T cells ratios, reduced Th2 lineage differentiation, diminished IL4 and IL2 production and reduced T cell proliferation. Importantly ITK deficient mice fail to mount an immune response to infection and show reduced allergic asthma reactions. In contrast to its well described role in immune function, ITK's function in cancer biology is still emerging. Recent studies had reported enhanced ITK expression and activation of the ITK pathway in several types of leukemias and lymphomas. In addition, the dependence of T cell malignancies on an ITK-regulated pathway, namely the IL2/IL2R (CD25) pathway, has also been observed. Taken together, this information indicates that ITK is a therapeutic target, with applicability in leukemias and lymphomas. MannKind scientists have developed a series of selective small molecule ITK inhibitors, including the orally available tool compound described within, and evaluated their activity in enzyme, cell-based and in vivo studies. In cellular assays, the compounds showed significant inhibition of the T cell-receptor mediated activation of the ITK pathways and related downstream cytokine production. In addition to inhibiting the phosphorylation of ITK and its downstream mediator, PLCg, our tool compounds inhibited the production of IL2 and expression of CD25 in a dose dependent manner. Importantly, our compound regulated the in vitro growth of tumor T cells but not that of unrelated control cells. In vivo studies revealed that the tool compounds inhibited the growth and progression of patient derived ATL tumors in a xenograft pre-clinical model, and prolonged the survival of treated mice in a dose dependent manner, in addition to regulating cytokine production in vivo. In summary, our team has identified ITK selective compounds with demonstrated on-target and anti-tumor activity in vitro and preclinical T cell tumor models, and validated this pathway relative to T cell malignancies. This effort provides a platform for further compound optimization and evaluation for hematologic malignancies. Disclosures: Faris: MannKind Corp: Employment. Malyankar:MannKind Corp: Employment. Zeng:MannKind Corp: Employment. Kertesz:Mannkind Corporation: Employment, Equity Ownership. Vuga:MannKind Corp.: Employment. Rosario:MannKind Corp: Employment. Bot:MannKind Corp: Employment.


1998 ◽  
Vol 22 ◽  
pp. 33-35
Author(s):  
A. T. Adesogan ◽  
E. Owen ◽  
D. I. Givens

Several published reports on the nutritive value of whole-crop wheat (WCW) have been based on estimations from laboratory techniques, some of which were developed for grass silage. However, there is little information on the accuracy of such estimations. Therefore the aim of this study was to evaluate the suitability of predicting the in vivo digestibility of WCW from various less animal-dependent techniques.


Sign in / Sign up

Export Citation Format

Share Document