The mRNA and lncRNA landscape of the non-pregnant endometrium during the oestrus cycle in dairy goat

2019 ◽  
Vol 59 (10) ◽  
pp. 1803 ◽  
Author(s):  
Xiaorui Liu ◽  
Lei Zhang ◽  
Jiuzeng Cui ◽  
Sicheng Che ◽  
Yuexia Liu ◽  
...  

Cyclic changes in the endometrium are essential for embryo implantation in mammals; many studies report that such changes constitute a complex process involving numerous molecular mediators. In the present study, goat endometria at oestrus Day 5 and oestrus Day 15 were selected to systematically analyse the transcriptome using strand-specific Ribo-Zero RNA sequencing. Over 120 million high-quality paired-end reads were generated and 440400 transcripts were identified in the endometrial tissue of dairy goats. In total, 489 differentially expressed mRNAs and 854 differentially expressed long non-coding RNAs were identified when comparing the endometrium at goat endometria at oestrus Day 5 and oestrus Day 15. Neurotensin was found to play a potentially important role in the non-pregnant goat endometrium during the oestrus cycle. Furthermore, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses of the cis-target genes of the differentially expressed long non-coding RNAs showed that GO:0005198 (structural molecule activity) and ko04510 (focal adhesion) might be involved in cyclic endometrial changes. Taken together, the resulting transcriptomic profiles elucidate global trends in mRNA and lncRNA expression in non-pregnant endometria during the oestrus cycle in dairy goats.

2021 ◽  
Author(s):  
Morten T. Jarlstad Olesen ◽  
Lasse S. Kristensen

Abstract Gene expression in eukaryotic cells is a complex process encompassing several layers of regulation at the transcriptional and post-transcriptional levels. At the post-transcriptional level, microRNAs (miRs) are key regulatory molecules that function by binding directly to mRNAs. This generally leads to less efficient translation of the target mRNAs. More recently, an additional layer of gene regulation has been discovered, as other molecules, including circular RNAs (circRNAs), may bind to miRs and thereby function as sponges or decoys resulting in increased expression of the corresponding miR target genes. The circRNAs constitute a large class of mainly non-coding RNAs, which have been extensively studied in recent years, in particular in the cancer research field where many circRNAs have been proposed to function as miR sponges. Here, we briefly describe miR-mediated gene regulation and the extra layer of regulation that is imposed by the circRNAs. We describe techniques and methodologies that are commonly used to investigate potential miR sponging properties of circRNAs and discuss major pitfalls and controversies within this relatively new research field.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1052
Author(s):  
Jiuzeng Cui ◽  
Xiaorui Liu ◽  
Lichun Yang ◽  
Sicheng Che ◽  
Hongran Guo ◽  
...  

The endometrium undergoes a series of complex changes to form a receptive endometrium (RE) that allows the embryo to be implanted. The inability to establish endometrial receptivity of livestock causes embryo implantation failure and considerable losses to animal husbandry. MicroRNAs (miRNAs) are a class of noncoding RNAs. Studies have found that miRNAs can regulate many critical physiological processes, including the establishment of RE during embryo implantation. miR-184 is highly expressed in the endometrial receptive period of dairy goats. This study aimed to explore the effect of miR-184 on endometrial epithelial cell (EEC) apoptosis and RE establishment. Stanniocalcin2 (STC2) is a direct target of miR-184, and miR-184 decreases the expression of STC2 in dairy goat EECs. miR-184 can activate EECs apoptosis through the RAS/RAF/MEK/ERK pathway. Additionally, miR-184 increases the expression levels of RE marker genes, such as forkhead box M1 (FOXM1) and vascular endothelial growth factor (VEGF). These findings indicate that miR-184 promotes the apoptosis of endometrial epithelial cells in dairy goats by downregulating STC2 via the RAS/RAF/MEK/ERK pathway, and that it may also regulate the establishment of RE in dairy goats.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1565
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jiang Hu ◽  
Xiu Liu ◽  
...  

Long non-coding RNAs (lncRNAs) are a kind of non-coding RNA with >200 nucleotides in length. Some lncRNAs have been proven to have clear regulatory functions in many biological processes of mammals. However, there have been no reports on the roles of lncRNAs in ovine mammary gland tissues. In the study, the expression profiles of lncRNAs were studied using RNA-Seq in mammary gland tissues from lactating Small-Tailed Han (STH) ewes and Gansu Alpine Merino (GAM) ewes with different milk yield and ingredients. A total of 1894 lncRNAs were found to be expressed. Compared with the GAM ewes, the expression levels of 31 lncRNAs were significantly up-regulated in the mammary gland tissues of STH ewes, while 37 lncRNAs were remarkably down-regulated. Gene Ontogeny (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the target genes of differentially expressed lncRNAs were enriched in the development and proliferation of mammary epithelial cells, morphogenesis of mammary gland, ErbB signaling pathway, and Wnt signaling pathway. Some miRNA sponges of differentially expressed lncRNAs, reported to be associated with lactation and mammary gland morphogenesis, were found in a lncRNA-miRNA network. This study reveals comprehensive lncRNAs expression profiles in ovine mammary gland tissues, thereby providing a further understanding of the functions of lncRNAs in the lactation and mammary gland development of sheep.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
Lanlan Li ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR.Conclusions: Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


2020 ◽  
Author(s):  
Xuping Zhu ◽  
Yanyu Li ◽  
Xue Zhu ◽  
Yanmin Jiang ◽  
Xiaowei Zhu ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are important mediators in the pathogenesis of diabetic gastrointestinal autonomic neuropathy, which has just been reported to have a relation to enteric glial cells (EGCs). However, the role of lncRNAs in the pathogenesis of diabetic gastrointestinal autonomic neuropathy, especially EGCs-related gastrointestinal dysfunction, has never been reported. Methods RNA sequencing technology (RNA-Seq) was used to screen the differential lncRNAs and mRNAs in EGCs under hyperglycemia (300 mmol L− 1 high glucose). Results Totally 4678 differentially expressed lncRNAs (DE lncRNAs) and 6244 differentially expressed mRNAs (DE mRNAs) were obtained. GO enrichment analysis and KEGG pathway analysis showed significant differences. 2910 and 1549 co-expressed mRNAs were respectively expressed in up-regulated and down-regulated DE lncRNA target genes. Several up- or down-regulated lncRNAs were at the key junction points of the regulatory network. Protein-protein interaction networks showed highly connected clusters were TP53, AKT1, Casp9, Casp8, Casp3, TNF, etc, which are known closely related to apoptosis. FLRT3, Fras1, and other related target genes, which revealed the potential function of lncRNAs, may be important targets for differential lncRNAs to regulate the apoptosis of glial cells induced by hyperglycemia. Conclusion In this study, the involvement of lncRNAs in EGCs under hyperglycemia was analyzed using transcriptome analysis.


2020 ◽  
Author(s):  
Qing Xia ◽  
Qiuling Li ◽  
Shangquan Gan ◽  
Xiaofei Guo ◽  
Xiaosheng Zhang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) can play important roles in uterine and ovarian functions. However, little researches have been done on the role of lncRNAs in the adrenal gland of sheep. Herein, RNA sequencing was used to compare and analyze gene expressions in adrenal tissues between FecB ++ (WW) and FecB BB (MM) sheep in the follicular and luteal phases and key lncRNAs and genes associated with reproduction were identified. Results In MM sheep, 38 lncRNAs and 545 mRNAs were differentially expressed in the adrenal gland between the luteal and follicular phases; In WW sheep, 30 differentially expressed lncRNAs and 210 mRNAs were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that differentially expressed lncRNAs and their target genes are mainly involved in the circadian rhythm, the mitogen activated protein kinase, thyroid, ovarian steroidogenesis and transforming growth factor beta signaling pathways. Key lncRNAs can regulate reproduction by modulating genes involved in these signaling pathways and biological processes. Specifically, XLOC_254761 , XLOC_357966 , 105614839 and XLOC_212877 targeting CREB1 , PER3 , SMAD1 and TGFBR2 , respectively, appear to play key regulatory roles. Conclusion These results broaden our understanding of lncRNAs in adrenal gland of sheep and provide new insights into the molecular mechanisms underlying sheep reproduction.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR.Conclusions: Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


2020 ◽  
Vol 21 (5) ◽  
pp. 1732 ◽  
Author(s):  
Qianqian Li ◽  
Ziying Huang ◽  
Wenjuan Zhao ◽  
Mengxun Li ◽  
Changchun Li

Intramuscular fat (IMF) content is closely related to various meat traits, such as tenderness, juiciness, and flavor. The IMF content varies considerably among pig breeds with different genetic backgrounds. Long intergenic non-coding RNAs (lincRNAs) have been widely identified in many species and found to be an important class of regulators that can participate in multiple biological processes. However, the mechanism behind lincRNAs regulation of pig IMF content remains unknown and requires further study. In our study, we identified a total of 156 lincRNAs in the longissimus dorsi muscle of Wei (fat-type) and Yorkshire (lean-type) pigs using previously published data. These identified lincRNAs have shorter transcript length, longer exon length, lower exon number, and lower expression level as compared with protein-coding transcripts. We predicted potential target genes (PTGs) that are potentially regulated by lincRNAs in cis or trans regulation. Gene ontology and pathway analyses indicated that many potential lincRNAs target genes are involved in IMF-related processes or pathways, such as fatty acid catabolic process and adipocytokine signaling pathway. In addition, we analyzed quantitative trait locus (QTL) sites that differentially expressed lincRNAs (DE lincRNAs) between Wei and Yorkshire pigs co-localized. The QTL sites where DE lincRNAs co-localize are mostly related to IMF content. Furthermore, we constructed a co-expressed network between DE lincRNAs and their differentially expressed PTGs (DEPTGs). On the basis of their expression levels, we suggest that many DE lincRNAs can affect IMF development by positively or negatively regulating their PTGs. This study identified and analyzed some lincRNAs- and PTGs-related IMF development of the two pig breeds and provided new insight into research on the roles of lincRNAs in the two types of breeds.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
Lanlan Li ◽  
...  

Abstract Background Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China’s most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. Conclusions Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.


2020 ◽  
Author(s):  
Fuhui Han ◽  
Jing Li ◽  
Nan Liu ◽  
Ranran Zhao ◽  
Lirong Liu ◽  
...  

Abstract Background: Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in longissimus dorsi muscle (LDM) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). Results: We identified a total of 26,247 genes and 6,935 novel lncRNAs in LDM samples of sheep. Among these, 606 mRNAs and 408 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were primarily enriched in lipid metabolism, lipid transport, regulation of primary metabolic processes and developmental pathways. Based on the results of important KEGG pathways, we obtained six candidate lncRNAs that potentially regulate lipid deposition and constructed an lncRNA-mRNA co-expression network that included MSTRG.792.1- SCD , MSTRG.8227.1- ACAA2 , MSTRG.10679.1- FADS2 , MSTRG.21942.1- PLA2G4E , MSTRG.21380.1- FZD4 and MSTRG.9270.1- ULK1 . We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. Conclusions: Our study provided a list of the lncRNAs and mRNAs related to intramuscular lipid deposition in sheep and laid a foundation for future research on regulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document