Increasing applications of potassium fertiliser to barley crops grown on deficient sandy soils increased grain yields while decreasing some foliar diseases

2007 ◽  
Vol 58 (7) ◽  
pp. 680 ◽  
Author(s):  
R. F. Brennan ◽  
K. W. Jayasena

Most sandy soils used for cropping in south-western Australia (SWA) have now become potassium (K) deficient due to removal of K in hay and grain, so it is now profitable to apply K fertiliser to most barley (Hordeum vulgare L.) crops in the region. Leaf diseases of barley crops in the region have increased in recent years particularly in the in medium to high (350–600 mm annual average rainfall) areas of SWA. Seventeen field experiments were undertaken to determine the effect of applications of K fertiliser, either the chloride (KCl) or sulfate source (K2SO4), on grain yield increases and on the percentage leaf area diseased (%LAD) when diseases were controlled or not controlled by fungicide sprays. Maximum grain yield of barley was achieved where adequate K fertiliser (~8–22 kg K/ha) was applied and leaf diseases were controlled by fungicide. Applying increasing amounts of applied K fertiliser (0–120 kg K/ha) to barley decreased the %LAD by powdery mildew (Blumeria graminis f. sp. hordei Syn.) and spot-type net blotch (Pyrenophora teres f. maculata (Sacc.) Shoem.) and increased grain yield. By contrast, when leaf rust (Puccinia hordei G. Otth) was present the %LAD was unaffected by K application. When powdery mildew was the major disease, larger increases in grain yields and larger reductions in %LAD were obtained when KCl was used instead of K2SO4. About twice as much K fertiliser as K2SO4 was required for 90% maximum grain yield compared with KCl where powdery mildew was present. Applying larger amounts (>40 kg K/ha) of K fertiliser than required to achieve maximum grain yields did not further reduce %LAD by powdery mildew. There were no significant differences between the 2 sources of K fertiliser on the %LAD by spot-type net blotch. Generally, the percentage protein content and hectolitre weight of grain were unaffected by K fertiliser. Potassium fertiliser decreased the percentage grain < 2.5 mm (known locally as screenings) and control of the foliar leaf diseases by applications of fungicide resulted in a decrease in protein content and screenings and increased hectolitre weight of barley grain. The concentration of K in dried shoots that was related to 90% of the maximum shoot yield (critical diagnostic K) decreased as the plant matured, and was ~41 g/kg at Z22, ~30 g/kg at Z32, ~20 g/kg at Z40, and ~15 g/kg at Z59. The concentration of K in dried shoots which was related to 90% of the grain yield (critical prognostic K) decreased as plant matured, and was similar to critical diagnostic K values. Leaf disease had little effect on critical concentrations of K at early growth stages (Z22 and Z32).

1990 ◽  
Vol 70 (2) ◽  
pp. 473-480 ◽  
Author(s):  
C. G. J. VAN DEN BERG ◽  
B. G. ROSSNAGEL

Spot-type net blotch, incited by Pyrenophora teres f. maculata has become widespread in Saskatchewan. This study was conducted to evaluate the effect of the fungicide Tilt (propiconazole) on the severity of spot-type net blotch, grain yield and yield components in spring barley. The susceptible cultivar Elrose was subjected to five schedules of foliar application of Tilt at Medstead, Shellbrook and Saskatoon, Saskatchewan in 1985 and 1986. The moderately susceptible cultivar Argyle was included in the experiments conducted in 1986. Results show that Tilt controlled spot-type net blotch in Elrose. However, the effective period was limited. A single application did not control spot-type net blotch in cases with rapid disease development. Application of Tilt at Zadoks growth stages 31 and 49 would be required to provide reliable control in a susceptible cultivar. Control of spot-type net blotch increased grain yield. A single application of Tilt increased grain yield up to 23% over the untreated control. In most cases, a double application of Tilt did not increase grain yield over a timely single application. Increased grain yield was associated with increased kernel weight. The correlation coefficient between grain yield and kernel weight ranged from 0.82 to 0.88. Tilt had no effect on a healthy crop of Elrose and the moderately susceptible cultivar Argyle.Key words: Pyrenophora teres f. maculata, Hordeum vulgare L., propiconazole, barley


2007 ◽  
Vol 47 (8) ◽  
pp. 976 ◽  
Author(s):  
R. F. Brennan ◽  
M. D. A. Bolland

Most soils used for agriculture in south-western Australia are sandy and are now deficient in both potassium (K) and nitrogen (N) for cereal and canola (oilseed rape; Brassica napus L.) grain production. However, the effect of applying different levels of both fertiliser K and N on grain yields of these crops is not known. We report results of 10 field experiments, conducted on sandy soils in the region, to measure the effects of applying both K and N on canola grain yields and concentration of oil and protein in grain. Four levels of K (0–60 kg K/ha as potassium chloride) and four levels of N (0–138 kg N/ha as urea) were applied. Significant grain yield responses to applied N occurred in all experiments for the nil-K treatment and each level of K applied, with responses increasing as more N was applied. For all levels of N applied, significant grain yield responses occurred when up to 30 kg K/ha was applied, with no further significant grain yield responses occurring when 60 kg K/ha was applied. The K × N interaction was always significant for grain production. Application of K had no effect on the concentration of oil and protein in grain. Application of N consistently decreased concentration of oil and increased concentration of protein in grain. The K × N interaction was not significant for concentration of oil or protein in grain, but application of up to 30 kg K/ha significantly increased canola grain and so oil yields (concentration of oil in grain multiplied by grain yield). Our results are likely to be relevant for all acidic to neutral sandy soils worldwide used for growing canola crops.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiu-Xiu Chen ◽  
Wei Zhang ◽  
Xiao-Yuan Liang ◽  
Yu-Min Liu ◽  
Shi-Jie Xu ◽  
...  

Abstract Although researchers have determined that attaining high grain yields of winter wheat depends on the spike number and the shoot biomass, a quantitative understanding of how phosphorus (P) nutrition affects spike formation, leaf expansion and photosynthesis is still lacking. A 3-year field experiment with wheat with six P application rates (0, 25, 50, 100, 200, and 400 kg P ha−1) was conducted to investigate this issue. Stem development and mortality, photosynthetic parameters, dry matter accumulation, and P concentration in whole shoots and in single tillers were studied at key growth stages for this purpose. The results indicated that spike number contributed the most to grain yield of all the yield components in a high-yielding (>8 t/ha) winter wheat system. The main stem (MS) contributed 79% to the spike number and tiller 1 (T1) contributed 21%. The 2.7 g kg−1 tiller P concentration associated with 15 mg kg−1 soil Olsen-P at anthesis stage led to the maximal rate of productive T1s (64%). The critical shoot P concentration that resulted in an adequate product of Pn and LAI was identified as 2.1 g kg−1. The thresholds of shoot P concentration that led to the maximum productive ability of T1 and optimal canopy photosynthetic capacity at anthesis were very similar. In conclusion, the thresholds of soil available P and shoot P concentration in whole plants and in single organs (individual tillers) were established for optimal spike formation, canopy photosynthetic capacity, and dry matter accumulation. These thresholds could be useful in achieving high grain yields while avoiding excessive P fertilization.


2003 ◽  
Vol 83 (4) ◽  
pp. 725-728 ◽  
Author(s):  
R. L. Conner ◽  
A. D. Kuzyk ◽  
H. Su

The effect of powdery mildew (Blumeria graminis f. sp. tritici) on the grain yield and protein content of one susceptible, Springfield, and three moderately resistant cultivars, Fielder, AC Reed and AC Nanda, of soft white spring wheat (Triticum aestivum) was examined at two field locations near Lethbridge and Vauxhall, Alberta, in 1999 and 2000. At the start of heading, powdery mildew development was suppressed in half of the plots of each cultivar by a single spray application of the fungicide Tilt (propiconazole). Severe powdery mildew infection of the susceptible cultivar Springfield resulted in yield reductions ranging from 11.4 to 19.9%. The grain yield of the moderately resistant cultivar Fielder was significantly reduced at both sites in 1999 by 7.6–10.5% while AC Reed suffered a significant yield loss (7.6–9.1%) at Lethbridge in both years. The moderately resistant cultivar AC Nanda consistently had the lowest powdery mildew ratings and its yield was unaffected by the disease. A single fungicide application prevented disease buildup on the moderately resistant cultivars, but not on Springfield. The grain protein content of the moderately resistant cultivars was unaffected by powdery mildew, but it decreased in Springfield by 0.6–0.7%. Key words: Powdery mildew, Propiconazole, Blumeria graminis f. sp. tritici, wheat, Triticum aestivum, resistance


1991 ◽  
Vol 31 (3) ◽  
pp. 357 ◽  
Author(s):  
RJ Jarvis ◽  
MDA Bolland

Five field experiments with lupins (Lupinus angustifolius) measured the effectiveness, for production, of 4 superphosphate placements either: (i) drilled with the seed to a depth of 4 or 5 cm; (ii) applied to the soil surface (topdressed) before sowing; or (iii) banded 2.5-5 cm and 7.5-8 cm below the seed while sowing. Levels of applied phosphate (P) from 0 to 36 kg P/ha were tested. In all experiments lupin grain yield responded to the highest level of superphosphate applied. At this P level, the average grain yield from all trials was 1.16 t/ha for the deepest banded treatment. This was 0.38 t/ha (49%) better than P drilled with the seed, and 0.62 t/ha (115%) better than P topdressed. Relative to superphosphate drilled with the seed and regardless of the lupin cultivar or the phosphate status of the soil, the effectiveness of superphosphate was increased by 10-90% by banding below the seed, and decreased by 30-60% by topdressing. Increasing the levels of superphosphate drilled with the seed generally reduced the density of seedlings and reduced early vegetative growth, probably due to salt or P toxicity. However, during the growing season, the plants treated with high levels of superphosphate recovered, so that eventually yields of dried tops and grain responded to increasing superphosphate drilled with the seed. In each experiment there was a common relationship between yield and P content in lupin tissue, regardless of how the superphosphate was applied, suggesting that lupins responded solely to P, and other factors did not alter yield. We recommend that farmers band superphosphate 5-8 cm below the seed while sowing, rather than continue the present practices of either drilling the fertiliser with the seed, or topdressing it before sowing.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 106 ◽  
Author(s):  
Ke Zhang ◽  
Xiaojun Liu ◽  
Syed Tahir Ata-Ul-Karim ◽  
Jingshan Lu ◽  
Brian Krienke ◽  
...  

Accurate estimation of the nitrogen (N) spatial distribution of rice (Oryza sativa L.) is imperative when it is sought to maintain regional and global carbon balances. We systematically evaluated the normalized differences of the soil and plant analysis development (SPAD) index (the normalized difference SPAD indexes, NDSIs) between the upper (the first and second leaves from the top), and lower (the third and fourth leaves from the top) leaves of Japonica rice. Four multi-location, multi-N rate (0–390 kg ha−1) field experiments were conducted using seven Japonica rice cultivars (9915, 27123, Wuxiangjing14, Wunyunjing19, Wunyunjing24, Liangyou9, and Yongyou8). Growth analyses were performed at different growth stages ranging from tillering (TI) to the ripening period (RP). We measured leaf N concentration (LNC), the N nutrition index (NNI), the NDSI, and rice grain yield at maturity. The relationships among the NDSI, LNC, and NNI at different growth stages showed that the NDSI values of the third and fourth fully expanded leaves more reliably reflected the N nutritional status than those of the first and second fully expanded leaves (LNC: NDSIL3,4, R2 > 0.81; NDSIothers, 0.77 > R2 > 0.06; NNI: NDSIL3,4, R2 > 0.83; NDSIothers, 0.76 > R2 > 0.07; all p < 0.01). Two new diagnostic models based on the NDSIL3,4 (from the tillering to the ripening period) can be used for effective diagnosis of the LNC and NNI, which exhibited reasonable distributions of residuals (LNC: relative root mean square error (RRMSE) = 0.0683; NNI: RRMSE = 0.0688; p < 0.01). The relationship between grain yield, predicted yield, and NDSIL3,4 were established during critical growth stages (from the stem elongation to the heading stages; R2 = 0.53, p < 0.01, RRMSE = 0.106). An NDSIL3,4 high-yield change curve was drawn to describe critical NDSIL3,4 values for a high-yield target (10.28 t ha−1). Furthermore, dynamic-critical curve models based on the NDSIL3,4 allowed a precise description of rice N status, facilitating the timing of fertilization decisions to optimize yields in the intensive rice cropping systems of eastern China.


2020 ◽  
pp. 19-22
Author(s):  
Yuriy Viktorovich Lobachev ◽  
Valeriy Tikonovich Krasilnikov

Under the conditions of the Right Bank of the Saratov Region, the effect of four herbicides, two new tank mixtures and two new compositions of herbicides on the value and variability of the following indicators of soybeans: “grain yield”, “number of beans from a plant”, “the number of grains per plant", "the mass of 1000 grains", "the protein content in the grain” was studied in three field experiments using two-way   variance and correlation analysis. The relationships between grain yield and elements of its structure, grain yield and protein content in grain are studied. All studied variants after application of herbicides significantly exceeded the control variant in grain yield. Options with the use of a new tank mixture of frontier optima + gezagard herbicides, frontier optima + galaxy top herbicidal compositions, hezagard + galaxy top herbicide compositions significantly exceeded the grain yield after application of  herbicides. This led to a decrease in the variability of the studied indicators and changed the nature of the correlation dependence of grain productivity with other economically useful indicators of soybeans. The specific effect of the application of individual herbicides, their tank mixtures and compositions on the variability and interconnection of economically useful indicators of soybeans has been established.


Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Jesper Rasmussen ◽  
Helle H. Nielsen ◽  
Hanne Gundersen

POST weed harrowing and other cultivation methods to control weeds in early crop growth stages may result in crop damage due to low selectivity between crop and weeds. Crop tolerance to cultivation plays an important role but it has not been clearly defined and analyzed. We introduce a procedure for analyzing crop tolerance on the basis of digital image analysis. Crop tolerance is defined as the ability of the crop to avoid yield loss from cultivation in the absence of weeds, and it has two components: resistance and recovery. Resistance is the ability of the crop to resist soil covering and recovery is the ability to recover from it. Soil covering is the percentage of the crop that has been buried because of cultivation. We analyzed data from six field experiments, four experiments with species of small grains, barley, oat, wheat, and triticale, and two experiments with barley cultivars with different abilities to suppress weeds. The order of species' tolerance to weed harrowing was triticale > wheat > barley > oat and the differences were mainly caused by different abilities to recover from soil covering. At 25% soil covering, grain yield loss in triticale was 0.5%, in wheat 2.5%, in barley 3.7%, and in oat 6.5%. Tolerance, resistance, and recovery, however, were influenced by year, especially for oat and barley. There was no evidence of differences between barley cultivars in terms of tolerance indicating that differences among species are more important than differences among cultivars. Selectivity analysis made it possible to calculate the crop yield loss due to crop damage associated with a certain percentage of weed control. In triticale, 80% weed control was associated with 22% crop soil cover on average, which reduced grain yield 0.4% on average in the absence of weeds. Corresponding values for wheat, barley, and oat were 23, 21, and 20% crop soil cover and 2.3, 3.6, and 5.1% grain yield loss.


1968 ◽  
Vol 48 (3) ◽  
pp. 313-320 ◽  
Author(s):  
C. A. Campbell

Two series of moisture treatments were used to determine if there was a specific growth stage at which low soil moisture stress caused poor seed set in Chinook wheat, and also to determine whether grain yield could be maximized by manipulating time of increasing or decreasing moisture stress.Maintaining soil moisture at 25 to 10% (dry) until the shot-blade stage produced 80% seed set, compared with only 30% seed set when moisture was maintained at 25% to 16% (wet) during the same period. Increasing or decreasing the soil moisture stress at different growth stages had little effect on the number of florets per head or the mean kernel weight. Under the conditions of this experiment, the number of heads and percent seed set were the main components influencing grain yield. The highest grain yields were obtained when plants were grown under dry conditions until late shot-blade and under wet conditions thereafter. Conversely, minimum grain yields were realized where plants were grown under wet conditions until late shot-blade and under dry conditions thereafter. Straw yield was closely related to the total moisture used.


2004 ◽  
Vol 52 (1) ◽  
pp. 95-104 ◽  
Author(s):  
P. Janaki ◽  
T. M. Thiyagarajan

Field experiments were conducted in June-September 1998 and 1999 with rice variety ASD18 at the wetland farm of Tamil Nadu Agricultural University, in Coimbatore, India to examine variations in 'Y' leaf (youngest fully expanded leaf) N concentration as influenced by different planting densities and N management strategies in a split plot design. The main plot consisted of three plant populations (33, 66 and 100 hills m-2) and the sub-plots treatments of five N management approaches. The results revealed that the nitrogen concentration progressively declined with growth, the decline being steep up to 35 days after transplanting, wereafter the values became almost linear up to the flowering stage in all the treatments. The mean 'Y' leaf N was found to be significantly higher at 33 hills m-2 (45.1 g kg-1), while the other two densities were on par (42.9 g kg-1). When N application was based on chlorophyll meter (SPAD) values the leaf N concentration was maintained at a level of 39.2 to 51.9 g kg-1 to produce maximum grain yield. A significant correlation was observed between the chlorophyll meter values and 'Y' leaf N concentrations at various days after transplanting (r values ranged from 0.57* to 0.83**), while the correlation was highly significant during the major physiological growth stages. Though the 'Y' leaf content was significantly higher in the treatment involving Sesbania rostrata green manuring + 150 kg N applied in splits, the grain yield produced was on par in all the N applied treatments. A highly significant correlation was observed between the grain yield and both 'Y' leaf N content and SPAD values during various growth periods.


Sign in / Sign up

Export Citation Format

Share Document