Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower

1987 ◽  
Vol 38 (5) ◽  
pp. 847 ◽  
Author(s):  
JP Thompson

Poor growth of crops after long fallows (> 12 months) in cracking clay soils of the northern areas of the Australian grain belt is known as 'long fallow disorder'. Various crop species, including wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.), grain sorghum [Sorghum bicolor (L.) Moench], sudan grass [Sorghum sudanense (Piper) Stapf], sunflower (Helianthus annuus L.), soybean [Glycine max (L.) Merr.] and maize (Zea mays L.), had less root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi and plant weight after long fallows than after short fallows. An experiment was conducted with a phosphorus-deficient soil that had been either fallowed for 3 years or sequentially cropped to cotton, sorghum and sunflower. Cropped soil had more mycorrhizal propagules consisting of intact spores and colonized roots than long fallow soil. In the glasshouse, mycorrhizal colonization of sunflower (cv. Hysun 33) developed quickly in previously cropped soil to peak at 80% of root length at 72 days (flowering), but in long fallow soil it proceeded slowly, attaining 35% of root length at 72 days. Inoculation of long fallow soil with 20% w/w cropped soil resulted in extensive root colonization (89% at 72 days), eliminated P deficiency symptoms and more than doubled plant growth and final P uptake. Inoculation with similar soil treated with gamma radiation to kill propagules of mycorrhizal fungi had no effect on plant growth. Sunflower grew extremely poorly in irradiated soil with considerable leaf necrosis due to P deficiency. Reinoculation with cropped soil resulted In high levels of mycorrhizal colonization and good plant growth. It was concluded that long fallow disorder is caused by a decline in viable propagules of mycorrhizal fungi during fallowing, resulting in poor root colonization and symbiotic effectiveness of a subsequent crop. Fertilizing with phosphorus (50 mg P/kg soil) delayed the development of mycorrhizal colonization, but increased final lengths of colonized roots at 72 days. Zinc fertilizer (15 mg Zn/kg soil) slightly improved mycorrhizal colonization, and basal fertilizer (N, K, S, Ca) substantially improved colonization in long fallow soil inoculated with cropped soil.

1991 ◽  
Vol 69 (12) ◽  
pp. 2597-2602 ◽  
Author(s):  
S. P. Bentivenga ◽  
B. A. D. Hetrick

The impact of benomyl fungicide and spring burning on mycorrhizal activity and plant growth was assessed in tallgrass prairie in Kansas. We report for the first time that the productivity of mycotrophic plants can be reduced by inhibition of indigenous vesicular–arbuscular mycorrhizal fungi under field conditions. A vital stain, nitro blue tetrazolium, used to assess active mycorrhizal colonization, proved to be a more sensitive measure of treatment effects than the cell wall stain, trypan blue. Burning stimulated both plant growth and active mycorrhizal colonization. However, by 32 days after burning no differences in colonization were detected. Our observations support the hypothesis that mycorrhizal fungi play an important role in the growth of warm-season tallgrass prairie grasses and may contribute to enhanced plant growth of warm-season tallgrass prairie grasses and may contribute to enchanced plant growth following spring burning. Key words: burning, benomyl fungicide, phosphorus, tallgrass prairie, VA mycorrhizae, warm-season grasses.


1984 ◽  
Vol 62 (4) ◽  
pp. 624-628 ◽  
Author(s):  
Marjan Van Nuffelen ◽  
N. C. Schenck

Six species of vesicular–arbuscular (VA) mycorrhizal fungi, each at 500 spores per kilogram of pasteurized soil, were compared for spore germination, hyphal root penetration, and root colonization on soybean in a repeated greenhouse experiment. Generally, the six species were categorized into two groups. Those species in group I (Glomus mosseae, Gl. intraradices, and Gigaspora heterogama) had higher spore germination, root penetration, percentage root colonization values, and fungal growth rates in the roots than those species in group II (Gl. etunicatum, Gi. margarita, and Entrophospora sp.). However, when we calculated the fungal growth rate (centimetres per day) per penetration point or used Smith and Walker's equation, the highest values were assigned to group II. Fungal growth rate per penetration point was inversely proportional to the number of penetration points, indicating growth "interference" among hyphae originating from different penetration points in the root. The number of penetration points was correlated significantly with root length but not with percentage of root colonization. Dry root weight was significantly correlated with length of colonized roots in both experiments, while shoot weight was correlated with colonized root length in only one of the two experiments. Glomus mosseae was the only species which induced a significant increase both in dry shoot weight and numbers of Rhizobium nodules as compared with those for nonmycorrhizal plants.


2014 ◽  
Vol 23 ◽  
pp. 47-62
Author(s):  
J. Philip Robinson ◽  
K. Nithya ◽  
R. Ramya ◽  
B. Karthikbalan ◽  
K. Kripa

Plant growth and physiological response of sesame (Sesamum indicum L.) were studied in controlled environment using normal soil and indigenous Vesicular-arbuscular mycorrhiza (VAM) fungi treated soil. The seedlings of Zea mays were inoculated with Giguspora species of VAM (Glomus fasiculatum) and the inoculum was multiplied with help of Zeamays seed bed. Sesame seeds were then inoculated into the bed and it was found that the plant height, shoots lengths, roots, biomass of shoot and roots were considerably increased in the mycorrhizal plants. The effect of VAM infection was assessed in pot experiment. In this comparative study, specific mycorrhizal fungi had consistent effects on various growth parameters such as the number of leaves, number of roots, shoot length, biomass of shoot and roots and biochemical parameters were observed at various time intervals by statistical analysis using two way ANOVA, it was confined with mycorrhizal and non-mycorrhizal infected plants. It was found that the ability of isolates to maintain the plant growth effectively in the case of mycorrhizal seedlings shows a maximum absorbtion of 0.77 ±0.2, shoot length is about 8.34 ±0.2, count of root and leaves are about 8.10 ±0.3, 5.6 ±0.3 respectively under mycorrhizal infection in 30days of analysis and had a positive effect on the growth at all intervals. Biochemical analysis were carried out to estimate the total chlorophyll, chrophyll A, chlorophyll B and Carotenoids contents and it was analyzed to be 9 ±0.5 mg/g, 8.3 ±0.5 mg/g, 3.6 ±0.5 mg/g, 4 ±0.3 mg/g respectively. At the 30th day of analysis for the mycorrhizal plants, it was found to be high in mycorrhizal seedlings which shows the symbiosis had improved the nutrient uptake of cultivated plants. Nevertheless G. fasiculatum was found to be the most efficient fungus and exhibited the highest levels of mycorrhizal colonization, as well as the greatest stimulation of physiological parameters.


2009 ◽  
Vol 60 (2) ◽  
pp. 124 ◽  
Author(s):  
Alan E. Richardson ◽  
Peter J. Hocking ◽  
Richard J. Simpson ◽  
Timothy S. George

Phosphorus (P) is an important nutrient required for plant growth and its management in soil is critical to ensure sustainable and profitable agriculture that has minimal impact on the environment. Although soils may contain a large amount of total P, only a small proportion is immediately available to plants. Australian soils often have low availability of P for plant growth and P-based fertilisers are, therefore, commonly used to correct P deficiency and to maintain productivity. For many soils, the sustained use of P fertiliser has resulted in an accumulation of total P, a proportion of which is in forms that are poorly available to most plants. The efficiency with which different P fertilisers are used in agricultural systems depends on their capacity to supply P in a soluble form that is available for plant uptake (i.e. as orthophosphate anions). In addition to fertiliser source, the availability of P in soil is influenced to a large extent by physico-chemical and biological properties of the soil. Plant access to soil P is further affected by root characteristics (e.g. rate of growth, specific root length, and density and length of root hairs) and biochemical processes that occur at the soil–root interface. The ability of roots to effectively explore soil, the release of exudates (e.g. organic anions and phosphatases) from roots that influence soil P availability, and the association of roots with soil microorganisms such as mycorrhizal fungi are particularly important. These processes occur as a natural response of plants to P deficiency and, through better understanding, may provide opportunities for improving plant access to soil and fertiliser P in conventional and organic agricultural systems.


Plant Disease ◽  
2016 ◽  
Vol 100 (4) ◽  
pp. 704-710 ◽  
Author(s):  
Estrella Luna ◽  
Emily Beardon ◽  
Sabine Ravnskov ◽  
Julie Scholes ◽  
Jurriaan Ton

Resistance-inducing chemicals can offer broad-spectrum disease protection in crops, but can also affect plant growth and interactions with plant-beneficial microbes. We have evaluated different application methods of β-aminobutyric acid (BABA) and jasmonic acid (JA) for long-lasting induced resistance in tomato against Botrytis cinerea. In addition, we have studied nontarget effects on plant growth and root colonization by arbuscular mycorrhizal fungi (AMF). Germinating seeds for 1 week in BABA- or JA-containing solutions promoted seed germination efficiency, did not affect plant growth, and induced resistance in 4-week-old plants. When formulating BABA and JA in carboxymethyl cellulose seed coating, only BABA was able to induce resistance in 4-week-old plants. Root treatment of 1-week-old seedlings with BABA or JA also induced resistance in 4-week-old plants. However, this seedling treatment repressed plant growth at higher concentrations of the chemicals, which was particularly pronounced in hydroponically grown plants after BABA treatment. Both seed coating with BABA, and seedling treatments with BABA or JA, did not affect AMF root colonization in soil-grown tomato. Our study has identified commercially feasible application methods of BABA and JA, which induce durable disease resistance in tomato without concurrent impacts on plant growth or colonization by plant-beneficial AMF.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 322
Author(s):  
Rui-Cheng Liu ◽  
Zhi-Yan Xiao ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Yong-Jie Xu ◽  
...  

Camellia is a genus of evergreen shrubs or trees, such as C. japonica, C. sinensis, C. oleifera, etc. A group of beneficial soil microorganisms, arbuscular mycorrhizal fungi (AMF), inhabit the rhizosphere of these Camellia spp. A total of eight genera of Acaulospora, Entrophospora, Funneliformis, Gigaspora, Glomus, Pacispora, Scutellospora, and Sclerocystis were found to be associated with Camellia plants with Glomus and/or Acaulospora being most abundant. These mycorrhizal fungi can colonize the roots of Camellia spp. and thus form arbuscular mycorrhizal symbionts. AMF is an important partner of Camellia spp. in the field of physiological activities. Studies indicated that AMF inoculation has been shown to promote plant growth, improve nutrient acquisition and nutritional quality, and increase resistance to drought, salinity and heavy metal contamination in potted Camellia. This review thus provides a comprehensive overview of AMF species occurring in the rhizosphere of Camellia spp. and summarizes the variation in root AMF colonization rate as well as the environmental factors and soil nutrients affecting root colonization. The paper also reviews the effects of AMF on plant growth response, nutrient acquisition, food quality, and stress tolerance of Camellia spp.


Author(s):  
Y. Z. Shi ◽  
X. L. Zhang ◽  
S. X. Su ◽  
Z. J. Lan ◽  
K. Li ◽  
...  

Legume crops are widely cultivated with agronomical and economic significance. Majority of legume species are known to form mycorrhizal symbioses. However, plants in the genus Lupinus are generally considered as nonmycorrhizal. In this review, published researches with regards to mycorrhizal colonization and function in lupines were revisited. Research findings on mycorrhizal colonization (field or laboratory conditions) and functions (promotion in plant growth, nutrient uptake and metabolites) are summarized. These studies show that 35 out of 43 Lupinus species are colonized by mycorrhizal fungi although their root colonization rates are very low (>10%). The symbiotic status between mycorrhizal fungi and Lupinus species depend on lupine species, fungal taxa, and edaphic growth conditions. The functions of mycorrhizas on lupines exhibit more on physiology than the absorption of P. The responses of lupines to mycorrhizal fungi changed depending on mycorrhizal and Lupinus species and especially soil P concentrations. Based on current limited studies, conclusions on the nature of mycorrhizal relation in lupine could be compromised unless further studies with detailed field surveys and well-designed experiments are implemented.


1983 ◽  
Vol 61 (8) ◽  
pp. 2140-2146 ◽  
Author(s):  
B. A. Daniels Hetrick ◽  
J. Bloom

More vesicular–arbuscular mycorrhizal (VAM) fungal species and significantly more fungal spores were recovered from undisturbed prairie soils than four winter wheat field soils in Kansas through the 1980–1981 growing season. Two previously undescribed sporocarpic species of Endogonaceae were found in prairie samples but have not been successfully established in pot culture, leaving the genus to which they belong unclear. Though variable, 11–50% VAM root colonization was evident in all prairie grass roots sampled throughout the year. In contrast, no identifiable VAM root colonization was evident in wheat until May after flowering when 27% root colonization was observed. During the 1981–1982 growing season, roots of two other wheat fields were sampled with similar results. No colonization occurred until May when 8% root colonization was evident. The possible influence of such low levels of root colonization occurring quite late in the growing season of winter wheat is discussed.


Soil Research ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 207 ◽  
Author(s):  
NS Bolan ◽  
LK Abbott

The effect of applied phosphorus on the growth of subterranean clover was studied in a virgin forest soil sample collected in summer and again in spring. The soil sample was used soon after it was collected. The shape of the response curve for plant growth differed greatly in the two experiments. This may be related to the presence of vesicular-arbuscular mycorrhizal infection in plants grown in the soil sample collected in summer and its absence in the soil sample collected in spring.


Sign in / Sign up

Export Citation Format

Share Document