Extraction of high-quality tissue-specific RNA from London plane trees (Platanus acerifolia), permitting the construction of a female inflorescence cDNA library

2008 ◽  
Vol 35 (2) ◽  
pp. 159 ◽  
Author(s):  
Zhineng Li ◽  
Guofeng Liu ◽  
Jiaqi Zhang ◽  
Junwei Zhang ◽  
Manzhu Bao

The London plane tree (Platanus acerifolia Willd.) has global importance as an urban landscaping tree and is the subject of genetic-improvement programs for productive sterility, disease and/or insect resistance. Molecular analysis techniques are crucial to such programs, but may be impeded by specific difficulties encountered during nucleic acid isolation. A detailed RNA isolation and purification protocol, based on established cetyltrimethyl-ammonium bromide (CTAB) extraction techniques combined with additional purification steps using butanol and the ionic detergent CTAB, which overcomes these problems in the woody species P. acerifolia, was conducted. In short, phenolic compounds are bound to soluble polyvinylpyrrolidone and then separated out through LiCl precipitation of the RNA. Subsequently, protein- and carbohydrate-contaminants are removed by chloroform partitioning followed by LiCl-mediated precipitation. The resulting isolates of RNA were found to be of sufficient quality for successful use in reverse transcription PCR analysis. Furthermore, RNA isolates from female inflorescences were used for the construction of a cDNA library. This library was found to contain several full-length cDNA clones of MADS-box genes, consistent with the library being representative of inflorescence expression profiles.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 655
Author(s):  
Hongmei Du ◽  
Shah Zaman ◽  
Shuiqingqing Hu ◽  
Shengquan Che

This study aimed to obtain the full-length transcriptome of purslane (Portulaca oleracea); assorted plant samples were used for single-molecule real-time (SMRT) sequencing. Based on SMRT, functional annotation of transcripts, transcript factors (TFs) analysis, simple sequence repeat analysis and long non-coding RNAs (LncRNAs) prediction were accomplished. Total 15.33-GB reads were produced; with 9,350,222 subreads and the average length of subreads, 1640 bp was counted. With 99.99% accuracy, after clustering, 132,536 transcripts and 78,559 genes were detected. All unique SMART transcripts were annotated in seven functional databases. 4180 TFs (including transcript regulators) and 7289 LncRNAs were predicted. The results of RNA-seq were confirmed with qRT–PCR analysis. Illumina sequencing of leaves and roots of two purslane genotypes was carried out. Amounts of differential expression genes and related KEGG pathways were found. The expression profiles of related genes in the biosynthesis of unsaturated fatty acids pathway in leaves and roots of two genotypes of purslane were analyzed. Differential expression of genes in this pathway built the foundation of ω-3 fatty acid accumulation in different organs and genotypes of purslane. The aforementioned results provide sequence information and may be a valuable resource for whole-genome sequencing of purslane in the future.


1996 ◽  
Vol 16 (1) ◽  
pp. 27-37 ◽  
Author(s):  
L Gabou ◽  
M Boisnard ◽  
I Gourdou ◽  
H Jammes ◽  
J-P Dulor ◽  
...  

ABSTRACT cDNA clones coding for rabbit prolactin were isolated from a pituitary library using a rat prolactin RNA probe. One cDNA contained 873 bases including the entire coding sequence of rabbit prolactin, its signal peptide and the 5′ and 3′ untranslated regions of 44 and 145 nucleotides respectively. The deduced amino acid sequence of the cloned prolactin cDNA presented a 93–78% identity with mink, porcine and human prolactins. The prolactin gene transcription was investigated by RT-PCR analysis in several organs of midlactating New Zealand White rabbits. The ectopic transcription of the prolactin gene was examined in more detail in the mammary gland. A strong PCR signal was detected in the mammary gland of virgin does and was also observed during pregnancy and at the beginning of lactation. This PCR signal was very weak in mid-lactating and absent in post-weaning mammary gland.


2006 ◽  
Vol 72 (2) ◽  
pp. 1667-1671 ◽  
Author(s):  
Ye Deng ◽  
Haitao Dong ◽  
Qingchao Jin ◽  
Cheng'en Dai ◽  
Yongqi Fang ◽  
...  

ABSTRACT We obtained 3,372 tentative unique transcripts (TUTs) from a cDNA library of Fusarium oxysporum. A cDNA array with 3,158 TUTs was produced to analyze gene expression profiles in conidial germination. It seems that ras and other signaling genes, e.g., ccg, cooperatively initiate conidial germination in Fusarium by increasing protein synthesis.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Lijuan Hu ◽  
Jian Chen ◽  
Fan Zhang ◽  
Junjun Wang ◽  
Jingye Pan ◽  
...  

Background. Long noncoding RNAs (lncRNAs) have been shown to be involved in the mechanism of cisplatin resistance in lung adenocarcinoma (LAD). However, the roles of lncRNAs in cisplatin resistance in LAD are not well understood. Methods. We used a high-throughput microarray to compare the lncRNA and mRNA expression profiles in cisplatin resistance cell A549/DDP and cisplatin sensitive cell A549. Several candidate cisplatin resistance-associated lncRNAs were verified by real-time quantitative reverse transcription polymerase chain reaction (PCR) analysis. Results. We found that 1,543 lncRNAs and 1,713 mRNAs were differentially expressed in A549/DDP cell and A549 cell, hinting that many lncRNAs were irregular from cisplatin resistance in LAD. We also obtain the fact that 12 lncRNAs were aberrantly expressed in A549/DDP cell compared with A549 cell by quantitative PCR. Among these, UCA1 was the aberrantly expressed lncRNA and can significantly reduce the IC50 of cisplatin in A549/DDP cell after knockdown, while it can increase the IC50 of cisplatin after UCA1 was overexpressed in NCI-H1299. Conclusions. We obtained patterns of irregular lncRNAs and they may play a key role in cisplatin resistance of LAD.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Abulaihaiti Maitiseyiti ◽  
Hongbo Ci ◽  
Qingbo Fang ◽  
Sheng Guan ◽  
Alimujiang Shawuti ◽  
...  

Objective. Long noncoding RNAs (lncRNAs) have emerged as critical molecular regulators in various diseases. However, the potential regulatory role of lncRNAs in the pathogenesis of abdominal aortic aneurysm (AAA) remains elusive. The aim of this study was to identify crucial lncRNAs associated with human AAA by comparing the lncRNA and mRNA expression profiles of patients with AAA with those of control individuals. Materials and Methods. The expression profiles of lncRNAs and mRNAs were analyzed in five dilated aortic samples from AAA patients and three normal aortic samples from control individuals using microarray technology. Functional annotation of the screened lncRNAs based on the differentially expressed genes was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results. Microarray results revealed 2046 lncRNAs and 1363 mRNAs. Functional enrichment analysis showed that the mRNAs significantly associated with AAA were enriched in the NOD-like receptor (NLR) and nuclear factor kappa-B (NF-κB) signaling pathways and in cell adhesion molecules (CAMs), which are closely associated with pathophysiological changes in AAA. The lncRNAs identified using microarray analysis were further validated using quantitative real-time polymerase chain reaction (qRT-PCR) analysis with 12 versus 11 aortic samples. Finally, three key lncRNAs (ENST00000566954, ENST00000580897, and T181556) were confirmed using strict validation. A coding-noncoding coexpression (CNC) network and a competing endogenous RNA (ceRNA) network were constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the confirmed lncRNAs. Conclusions. Our microarray profiling analysis and validation of significantly expressed lncRNAs between patients with AAA and control group individuals may provide new diagnostic biomarkers for AAA. The underlying regulatory mechanisms of the confirmed lncRNAs in AAA pathogenesis need to be determined using in vitro and in vivo experiments.


1984 ◽  
Vol 4 (10) ◽  
pp. 2142-2150 ◽  
Author(s):  
R A Levine ◽  
G J LaRosa ◽  
L J Gudas

In the absence of retinoic acid, PSA-G teratocarcinoma stem cells spontaneously differentiate at a moderate frequency into fibroblast-like cells. In the presence of retinoic acid and dibutyryl cyclic AMP, PSA-G stem cells differentiate into parietal endoderm cells. We prepared a cDNA library from undifferentiated PSA-G teratocarcinoma stem cells; this cDNA library was then screened for gene sequences which exhibit a reduction in expression during the differentiation of these stem cells. From ca. 1,000 clones screened, eight independent sequences were isolated. The level of expression of these cloned genes decreases by 3.0-fold to more than 10-fold after differentiation of PSA-G cells into fibroblast-like cells. After treatment of either PSA-G or F9 teratocarcinoma cells with retinoic acid and dibutyryl cyclic AMP for 72 h, the expression of seven genes is inhibited by two- to fourfold. This decrease of clone-specific transcripts can be detected within 12 h after the addition of retinoic acid. Hybridization-selection and in vitro translation experiments identified the proteins encoded by three of the cloned genes: pST 6-23 codes for a 89,000-dalton protein, pST 7-105 codes for a 41,000-dalton protein, and pST 9-31 codes for a 34,000-dalton protein. The 89,000-dalton protein encoded by pST 6-23 is a heat shock protein. In vitro transcription experiments demonstrate that the retinoic acid-mediated decrease in pST 6-135- and pST 1-68-specific RNA occurs at the transcriptional level and that dibutyryl cyclic AMP acts posttranscriptionally to further depress the levels of these RNAs.


Cornea ◽  
1991 ◽  
Vol 10 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Takeshi Haseba ◽  
Mitsuru Nakazawa ◽  
Winston W-Y. Kao ◽  
Ramesh Murthy ◽  
Candace W-C. Kao
Keyword(s):  

Genome ◽  
2010 ◽  
Vol 53 (8) ◽  
pp. 608-618 ◽  
Author(s):  
Xiaoguang Chen ◽  
Cunshuan Xu ◽  
Fuchun Zhang ◽  
Ji Ma

It has been documented that chemokines can positively regulate liver regeneration at the tissue level after partial hepatectomy. However, the precise mechanism of the effects of chemokines on regeneration at the cellular level remains poorly defined. In this study, 8 cell types from rat regenerating liver at 8 recovery time points after 2/3 hepatectomy were isolated and purified using Percoll density gradient centrifugation and immunomagnetic bead methods. The expression profiles of each cell type were monitored using a microarray. RT-PCR analysis was performed to validate the reliability of the microarray results. The results showed that, on the whole, the expression profiles of chemokine and receptor genes varied among different cell types; most genes involved in chemokine signaling pathways showed an increase in expression across the 8 liver cell types during liver regeneration. The implication of these genes in regeneration was analyzed by bioinformatics and systems biology methods. According to the microarray results and gene synergy, activation of chemokine signaling pathways at 24 h in biliary epithelial cells and at 2–12 h in dendritic cells may be triggered by CCL2–CCR2 and CCL7–CCR3, respectively; activation of Plc/Pkc and Pi3k/Akt pathways at 2–12 h in sinusoidal endothelial cells might be caused by CCL7–CCR1; and activation of the Src/Ptk, Src/Vav, and Plc/Pkc pathways at the priming stage may be related to the inductive effect of CCL7. These data suggest the potential relevance of the pro-inflammatory chemokines for liver regeneration at the cellular level.


Sign in / Sign up

Export Citation Format

Share Document