Reactive oxygen species regulation and antioxidant defence in halophytes

2013 ◽  
Vol 40 (9) ◽  
pp. 832 ◽  
Author(s):  
Rengin Ozgur ◽  
Baris Uzilday ◽  
Askim Hediye Sekmen ◽  
Ismail Turkan

Production of reactive oxygen species (ROS), which are a by-product of normal cell metabolism in living organisms, is an inevitable consequence of aerobic life on Earth, and halophytes are no exception to this rule. The accumulation of ROS is elevated under different stress conditions, including salinity, due to a serious imbalance between their production and elimination. These ROS are highly toxic and, in the absence of protective mechanisms, can cause oxidative damage to lipids, proteins and DNA, leading to alterations in the redox state and further damage to the cell. Besides functioning as toxic by-products of stress metabolism, ROS are also important signal transduction molecules in controlling growth, development and responses to stress. Plants control the concentrations of ROS by an array of enzymatic and non-enzymatic antioxidants. Although a relation between enzymatic and non-enzymatic antioxidant defence mechanisms and tolerance to salt stress has been reported, little information is available on ROS-mediated signalling, perception and specificity in different halophytic species. Hence, in this review, we describe recent advances in ROS homeostasis and signalling in response to salt, and discuss current understanding of ROS involvement in stress sensing, stress signalling and regulation of acclimation responses in halophytes. We also highlight the role of genetic, proteomic and metabolic approaches for the successful study of the complex relationship among antioxidants and their functions in halophytes, which would be critical in increasing salt tolerance in crop plants.

2021 ◽  
Author(s):  
Chunning Sun ◽  
Michael Gradzielski

Hydrogen peroxide (H2O2), a key reactive oxygen species, plays an important role in living organisms, industrial and environmental fields. Here, a non-contact upconversion nanosystem based on the excitation energy attenuation...


Author(s):  
Dumitriţa RUGINǍ ◽  
Adela PINTEA ◽  
Raluca PÂRLOG ◽  
Andreea VARGA

Oxidative stress causes biological changes responsible for carcinogenesis and aging in human cells. The retinal pigmented epithelium is continuously exposed to oxidative stress. Therefore reactive oxygen species (ROS) and products of lipid peroxidation accumulate in RPE. Neutralization of ROS occurs in retina by the action of antioxidant defence systems. In the present study, the protective effect of caffeic acid (3,4-dihydroxy cinnamic acid), a dietary phenolic compound, has been examined in normal and in oxidative stress conditions (500 µM peroxide oxygen) in cultures human epithelial pigment retinal cells (Nowak, M. et al.). The cell viability, the antioxidant enzymes activity (CAT, GPx, SOD) and the level of intracellular reactive oxygen species (ROS) were determined. Exposure to l00 µM caffeic acid for 24 h induced cellular changes indicating the protective effect of caffeic acid in RPE cells. Caffeic acid did not show any cytotoxic effect at concentrations lower than 200 μM in culture medium. Treatment of RPE cells with caffeic acid causes an increase of catalase, glutathione peroxidase and superoxide dismutase activity, especially in cells treated with hydrogen peroxide. Caffeic acid causes a decrease of ROS level in cells treated with hydrogen peroxide. This study proved that caffeic acid or food that contain high levels of this phenolic acid may have beneficial effects in prevention of retinal diseases associated with oxidative stress by improving antioxidant defence systems.


Author(s):  
Minu Kesheri ◽  
Swarna Kanchan ◽  
Rajeshwar P. Sinha

In retrospect to the rise in the occurrence of ageing related disorders and the everlasting desire to overcome ageing, exploring the causes, mechanisms and therapies to curb ageing becomes relevant. Reactive Oxygen Species (ROS) are commonly generated during normal growth and development. However abiotic and biotic stresses enhance the level of ROS which in turn pose the threat of oxidative stress. Ability to perceive ROS and to speedily commence antioxidant defenses is crucial for the survival as well as longevity of living cells. Therefore living organisms are bestowed with antioxidants to combat the damages caused by oxidative stress. This chapter aims to elucidate an overview of the process of ageing, generation and enhancement of reactive oxygen species, damages incurred by oxidative stress, its amelioration strategies, therapeutic and biotechnological potentials of antioxidants and various sources of bioactive compounds significant in retardation of aging process.


Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 428 ◽  
Author(s):  
Sayed Mohsin ◽  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Khursheda Parvin ◽  
Masayuki Fujita

The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber plant growth that caused yellowing of the whole plant and significantly destructed the contents of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems, and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber plants by regulating reactive oxygen species production and antioxidant defense systems.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 963 ◽  
Author(s):  
Andrea Tóth ◽  
Enikő Balogh ◽  
Viktória Jeney

Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 102 ◽  
Author(s):  
Ewa Muszyńska ◽  
Mateusz Labudda ◽  
Adam Kral

This research aimed to indicate mechanisms involved in protection against the imbalanced generation of reactive oxygen species (ROS) during heavy metals (HMs) exposition of Silene vulgaris ecotypes with different levels of metal tolerance. Specimens of non-metallicolous (NM), calamine (CAL), and serpentine (SER) ecotypes were treated in vitro with Zn, Pb, and Cd ions applied simultaneously in concentrations that reflected their contents in natural habitats of the CAL ecotype (1× HMs) and 2.5- or 5.0-times higher than the first one. Our findings confirmed the sensitivity of the NM ecotype and revealed that the SER ecotype was not fully adapted to the HM mixture, since intensified lipid peroxidation, ultrastructural alternations, and decline in photosynthetic pigments’ content were ascertained under HM treatment. These changes resulted from insufficient antioxidant defense mechanisms based only on ascorbate peroxidase (APX) activity assisted (depending on HMs concentration) by glutathione-S-transferase (GST) and peroxidase activity at pH 6.8 in the NM ecotype or by GST and guaiacol-type peroxidase in the SER one. In turn, CAL specimens showed a hormetic reaction to 1× HMs, which manifested by both increased accumulation of pigments and most non-enzymatic antioxidants and enhanced activity of catalase and enzymes from the peroxidase family (with the exception of APX). Interestingly, no changes in superoxide dismutase activity were noticed in metallicolous ecotypes. To sum up, the ROS scavenging pathways in S. vulgaris relied on antioxidants specific to the respective ecotypes, however the synthesis of polyphenols was proved to be a universal reaction to HMs.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Mohammad javad Tavassolifar ◽  
Mohammad Vodjgani ◽  
Zahra Salehi ◽  
Maryam Izad

Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.


2019 ◽  
Vol 26 (07) ◽  
pp. 1036-1041
Author(s):  
Muhammad Yaqoob Shahani ◽  
Umbreen Bano ◽  
Shazia Begum Shahani ◽  
Pashmina Shaikh ◽  
Sameena Gul Memon ◽  
...  

Objectives: To analyze the antioxidant activity of Resveratrol and Ascorbic Acid against hydrogen peroxide (an oxidant) mediated cell injury of human trabecular meshwork cells. Study Design: Experimental study. Setting: Molecular Biology Laboratory at Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro. Period: Six months. Materials and Methods: Human Trabecular Meshwork cells were purchased from ScienCell Research Laboratories, USA. TM cell metabolism, TM cell viability and Reactive oxygen species were detected by standard methods in co- and pre- treated TM cells. Results: A significant reduction in TM cell metabolism was observed approximating 61% at 1.0 mM H2O2 compared to Ascorbate – 99% and Resveratrol 99% (p=0.0001). Resveratrol was more effective than Ascorbate even at 4.0 mM H2O2, the TM cell activity was noted 76%. Compared to H2O2- treated TM cells, resveratrol improved mitochondrial function upto 4.0 mM H2O2 (76%). Compared to co-treatment, the pretreatment shows similar results except at 4.0 mM H2O2. At 4.0 mM H2O2 the pre-treat TM cell metabolic activity was found as 11%, 31% and 47% compared to co-treat as 9%, 31% and 76% in controls, ascorbate and resveratrol groups respectively (p<0.05). Resveratrol shows significant decrease in viability was seen in controls compared to Ascorbate and Resveratrol groups. Cell viability showed statistically significant differences at 2.0 and 4.0 mM H2O2 compared to controls (P=0.0001). For reactive oxygen species (ROS), cells were incubated and with Ascorbate and Resveratrol for 24 hours and TM cells were treated with 0.0mM, 0.5 mM, 1.0 mM, 2.0mM and 4.0mM H2O2. Significant decrease in ROS was noted by Resveratrol compared to Ascorbate. Conclusions: Resveratrol and Ascorbate may prove useful in preventing and delaying the glaucoma, and timely institution of these anti – oxidants may help maintain trabecular meshwork functions and prevent visual loss.


Sign in / Sign up

Export Citation Format

Share Document