Possible involvement of phosphoenolpyruvate carboxylase and NAD-malic enzyme in response to drought stress. A case study: a succulent nature of the C4-NAD-ME type desert plant, Salsola lanata (Chenopodiaceae)

2017 ◽  
Vol 44 (12) ◽  
pp. 1219
Author(s):  
Zhibin Wen ◽  
Mingli Zhang

The co-ordination between the primary carboxylating enzyme phosphoenolpyruvate carboxylase (PEPC) and the further decarboxylating enzymes is crucial to the efficiency of the CO2-concentrating mechanism in C4 plants, and investigations on more types of C4 plants are needed to fully understand their adaptation mechanisms. In this study we investigated the effect of drought on carboxylating enzyme PEPC, and the further decarboxylating NAD-malic enzyme (NAD-ME) of Salsola lanata Pall. (Chenopodiaceae) – an annual succulent C4-NAD-ME subtype desert plant. We investigated enzyme activity at the transcriptional level with real-time quantitative PCR and at the translational level by immunochemical methods, and compared S. lanata with other forms of studied C4 plants under drought stress. Results showed that only severe stress limited PEPC enzyme activity (at pH 8.0) of S. lanata significantly. Considering that PEPC enzyme activity (at pH 8.0) was not significantly affected by phosphorylation, the decrease of PEPC enzyme activity (at pH 8.0) of S. lanata under severe stress may be related with decreased PEPC mRNA. The suggestion of increased phosphorylation of the PEPC enzyme in plants under moderate stress was supported by the ratio of PEPC enzyme activity at pH 7.3/8.0, as PEPC enzyme is inhibited by L-malate and the evidence of the 50% inhibiting concentration of L-malate. NAD-ME activity decreased significantly under moderate and severe stress, and coincided with a change of leaf water content rather than the amount of α-NAD-ME mRNA and protein. Leaf dehydration may cause the decrease of NAD-ME activity under water stress. Compared with other C4 plants, the activities of PEPC and NAD-ME of S. lanata under drought stress showed distinct features.


2021 ◽  
Author(s):  
Shabnam Gohari ◽  
Ali Imani ◽  
AliReza Talaei ◽  
Vahid Abdossi ◽  
Mohamad Reza Asghari

Abstract Background Almonds ( Prunus amygdalus Batsch, syn. P. dulcis (Mill.) DA Webb) is a valuable nut crops species that is widely is cultivated in arid and semi-arid regions of Iran, due to drought tolerance and dehydration under drought stress. Almonds show physiological adaptations for survival in drought stress conditions, but the degree Drought adaptation varies between cultivars. However, to date, its morphological and physiological responses to drought, and the underlying mechanisms are not well understood. This study was aimed to investigate the morphological and physiological changes of almond genotypes under drought stress. almond genotypes were planted in pots and subjected to four levels of soil water treatments: above 80% (control), 60% (light stress), and 40% (severe stress) of field capacity. Results Within the total stress period (0–30 days), almond genotypes grew rapidly in the light stress, whereas severe stress had a negative impact on growth. So that, in this study, 10 selected almond genotypes using some morphological traits such as: plant height, trunk diameter at the top of the graft, new branch growth length, leaf yellowness and some physiological indicators under drought stress conditions such as Chlorophyll index was evaluated based on SPAD criterion, relative leaf water content, measurement of chlorophyll fluorescence and Organic Osmoprotectants to identify drought-resistant and sensitive genotypes under drought stress conditions. Among the selected genotypes studied, genotype A-7-100 was the most resistant and genotype A-124-1 was the most sensitive to drought stress. Conclusions Our results show that almond genotypes adapt to drought mainly by avoidance mechanisms, and its morphological and physiological characteristics are inhibited under severe stress, However, the degree of drought adaptation varies between different cultivars. These findings might help limited water resources to be fully used for increased the percentage of kernel and finally increased the growth and yield of plants under water stress.



Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 137 ◽  
Author(s):  
Yanlin Wang ◽  
Shanshan Gao ◽  
Xingyuan He ◽  
Yan Li ◽  
Peiyang Li ◽  
...  

The drought resistance mechanism of Matteuccia struthiopteris (L.) Todar. and Athyrium multidentatum (Doll.) Ching were measured under natural drought exposure. The results showed that the two edible fern species showed stronger resistance in the early stages of drought, mainly expressed as the decrease of relative leaf water content (RLWC), increase of osmotic substances, secondary metabolites such as flavonoids (FC), total phenols (TPC), proantho cyanidins (PCC) content and enzyme activity (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)). The higher RLWC, FC, TPC, PCC and abscisic acid (ABA) content and lower H2O2 content indicates the stronger non-enzymatic antioxidant system and drought resistance of A. multidentatum. However, the proline (Pro) content changed slowly, and the synthesis of soluble protein (SP), total phenols, proantho cyanidins and ABA, SOD activity of two fern species were inhibited in the late stages of drought stress. This study can provide a scientific basis for the cultivation and utilization of edible fern species under forest in Northeast China.



2014 ◽  
Vol 171 (5) ◽  
pp. 19-25 ◽  
Author(s):  
Veronika Doubnerová Hýsková ◽  
Lucia Miedzińska ◽  
Jana Dobrá ◽  
Radomira Vankova ◽  
Helena Ryšlavá


1981 ◽  
Vol 59 (8) ◽  
pp. 1397-1404 ◽  
Author(s):  
Ceredwyn E. Smith ◽  
Alan W. Bown

Phosphoenolpyruvate carboxylase (EC 4.1.1.31) and malic enzyme (EC 1.1.1.40) activities in soluble protein extracts of Avena coleoptiles were investigated as functions of pH. The presence of malic enzyme activity was confirmed by radiochemical assays which identified the product of the forward reaction and spectrophotometric assays which demonstrated that reduction or oxidation of NADP required all the substrates and cofactors necessary for the forward or reverse reactions. In neither assay could NADP or Mn2+ be replaced by NAD or Mg2+. Activity was independent of pH (6.0 to 7.7) at malate concentrations less than 0.1 mM. At higher concentrations the pH increase raised activity by at least 100%, and substrate inhibition by malate resulted in activity at 0.97 mM malate which was less than that at 0.5 mM malate. The increase in malic enzyme activity with rising pH can be attributed to a decrease in substrate inhibition and a decrease in Km,app (Mn2+). pH increases between 7.0 and 7.6 increased Vmax and phosphoenolpyruvate limited phosphoenolpyruvate carboxylase (PEPC) activity by over 200%, and decreased the Km,app (Mg2+). Inhibition of PEPC and malic enzyme by various carboxylic acids and phosphorylated sugars decreased as the assay pH rose. The results are discussed in light of contrasting suggestions concerning the role of these enzymes in cytosol pH regulation.



Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.



1991 ◽  
Vol 266 (32) ◽  
pp. 21997-22002
Author(s):  
D.L. Coleman ◽  
J.E. Kuzava


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1971
Author(s):  
Xingyang Song ◽  
Guangsheng Zhou ◽  
Qijin He ◽  
Huailin Zhou

Drought stress has adverse effects on crop growth and yield, and its identification and monitoring play vital roles in precision crop water management. Accurately evaluating the effect of drought stress on crop photosynthetic capacity can provide a basis for decisions related to crop drought stress identification and monitoring as well as drought stress resistance and avoidance. In this study, the effects of different degrees of persistent drought in different growth stages (3rd leaf stage, 7th leaf stage and jointing stage) on the maximum carboxylation rate at a reference temperature of 25 °C (Vcmax25) of the first fully expanded leaf and its relationship to the leaf water content (LWC) were studied in a field experiment from 2013 to 2015. The results indicated that the LWC decreased continuously as drought stress continued and that the LWC decreased faster in the treatment with more irrigation. Vcmax25 showed a decreasing trend as the drought progressed but had no clear relationship to the growth stage in which the persistent drought occurred. Vcmax25 showed a significantly parabolic relationship (R2 = 0.701, p < 0.001) with the LWC, but the different degrees of persistent drought stress occurring in different growth stages had no distinct effect on the LWC values when Vcmax25 reached its maximum value or zero. The findings of this study also suggested that the LWC was 82.5 ± 0.5% when Vcmax25 reached its maximum value (42.6 ± 3.6 μmol m−2 s−1) and 67.6 ± 1.2% (extreme drought) when Vcmax25 reached zero. These findings will help to improve crop drought management and will be an important reference for crop drought identification, classification and monitoring as well as for the development of drought monitoring and early warning systems for other crops or maize varieties.



Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 280
Author(s):  
Diana Saja-Garbarz ◽  
Agnieszka Ostrowska ◽  
Katarzyna Kaczanowska ◽  
Franciszek Janowiak

The aim of this study was to investigate the accumulation of silicon in oilseed rape and to characterize the changes in chosen water balance parameters in response to drought. The following parameters were estimated: water content, osmotic and water potential, evapotranspiration, stomatal conductance and abscisic acid level under optimal and drought conditions. It was shown that oilseed rape plants accumulate silicon after its supplementation to the soil, both in the case of silicon alone and silicon together with iron. It was revealed that silicon (without iron) helps maintain constant water content under optimal conditions. While no silicon influence on osmotic regulation was observed, a transpiration decrease was detected under optimal conditions after silicon application. Under drought, a reduction in stomatal conductance was observed, but it was similar for all plants. The decrease in leaf water content under drought was accompanied by a significant increase in abscisic acid content in leaves of control plants and those treated with silicon together with iron. To sum up, under certain conditions, silicon is accumulated even in non-accumulator species, such as oilseed rape, and presumably improves water uptake under drought stress.



1997 ◽  
Vol 24 (4) ◽  
pp. 459 ◽  
Author(s):  
Robert P. Walker ◽  
Richard M. Acheson ◽  
László I. Técsi ◽  
Richard C. Leegood

Some of the recent findings which revise our view of the role and regulation of phosphoenolpyruvate carboxykinase (PEPCK) in C4 plants are discussed. Evidence is presented that PEPCK is present at appreciable activities in the bundle-sheath of some NADP-malic enzyme-type C4 plants, such as maize, but it was not detectable in NAD-malic enzyme-type C4 plants. PEPCK is rapidly inactivated in crude extracts of leaves of the C4 plant, Panicum maximum. This inactivation could be prevented by high concentrations of dithiothreitol or by the inclusion of ADP or ATP, suggesting the involvement of thiols at the active site. PEPCK is also subject to rapid proteolysis in crude extracts of a range of C4 plants, resulting in cleavage to a smaller (62 kDa) form. This can be reduced by extraction at high pH and by the inclusion of SDS, but it means that intact PEPCK has never been purified from a C4 plant. The molecular mass of PEPCK varies considerably in C4 plants, unlike C3 and CAM plants in which it is usually 74 kDa. PEPCK is phosphorylated during darkness (and reversed by light) in some C4 plants with PEPCK of a larger molecular mass, such as Panicum maximum (71 kDa), but it was not phosphorylated in the PEPCK-type C4 plant, Sporobolus pyramidalis (69 kDa). The known regulatory properties of PEPCK are discussed in relation to its role in C4 photosynthesis, in particular its sensitivity to regulation by adenylates and by Mn2+.



Nature ◽  
1956 ◽  
Vol 177 (4514) ◽  
pp. 842-843 ◽  
Author(s):  
S. E. LEWIS ◽  
G. M. PRICE


Sign in / Sign up

Export Citation Format

Share Document