scholarly journals Infection with an asymptomatic virus in rice results in a delayed drought response

2020 ◽  
Vol 47 (3) ◽  
pp. 239 ◽  
Author(s):  
Jaymee R. Encabo ◽  
Reena Jesusa A. Macalalad-Cabral ◽  
Jerlie Mhay K. Matres ◽  
Sapphire Charlene Thea P. Coronejo ◽  
Gilda B. Jonson ◽  
...  

Infection of viruses in plants often modifies plant responses to biotic and abiotic stresses. In the present study we examined the effects of Rice tungro spherical virus (RTSV) infection on drought response in rice. RTSV infection delayed the onset of leaf rolling by 1–2 days. During the delay in drought response, plants infected with RTSV showed higher stomatal conductance and less negative leaf water potential under drought than those of uninfected plants, indicating that RTSV-infected leaves were more hydrated. Other growth and physiological traits of plants under drought were not altered by infection with RTSV. An expression analysis of genes for drought response-related transcription factors showed that the expression of OsNAC6 and OsDREB2a was less activated by drought in RTSV-infected plants than in uninfected plants, further suggesting improved water status of the plants due to RTSV infection. RTSV accumulated more in plants under drought than in well-watered plants, indicating the increased susceptibility of rice plants to RTSV infection by drought. Collectively, these results indicated that infection with RTSV can transiently mitigate the influence of drought stress on rice plants by increasing leaf hydration, while drought increased the susceptibility of rice plants to RTSV.

Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 232 ◽  
Author(s):  
Brito ◽  
Dinis ◽  
Moutinho-Pereira ◽  
Correia

Increasing consciousness regarding the nutritional value of olive oil has enhanced the demand for this product and, consequently, the expansion of olive tree cultivation. Although it is considered a highly resilient and tolerant crop to several abiotic stresses, olive growing areas are usually affected by adverse environmental factors, namely, water scarcity, heat and high irradiance, and are especially vulnerable to climate change. In this context, it is imperative to improve agronomic strategies to offset the loss of productivity and possible changes in fruit and oil quality. To develop more efficient and precise measures, it is important to look for new insights concerning response mechanisms to drought stress. In this review, we provided an overview of the global status of olive tree ecology and relevance, as well the influence of environmental abiotic stresses in olive cultivation. Finally, we explored and analysed the deleterious effects caused by drought (e.g., water status and photosynthetic performance impairment, oxidative stress and imbalance in plant nutrition), the most critical stressor to agricultural crops in the Mediterranean region, and the main olive tree responses to withstand this stressor.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 991
Author(s):  
Yayong Luo ◽  
Xueyong Zhao ◽  
Ginger R. H. Allington ◽  
Lilong Wang ◽  
Wenda Huang ◽  
...  

Global warming and changes in rainfall patterns may put many ecosystems at risk of drought. These stressors could be particularly destructive in arid systems where species are already water-limited. Understanding plant responses in terms of photosynthesis and growth to drought and rewatering is essential for predicting ecosystem-level responses to climate change. Different drought responses of C3 and C4 species could have important ecological implications affecting interspecific competition and distribution of plant communities in the future. For this study, C4 plant Pennisetum centrasiaticum and C3 plant Calamagrostis pseudophragmites were subjected to progressive drought and subsequent rewatering in order to better understand their differential responses to regional climate changes. We tracked responses in gas exchange, chlorophyll fluorescence, biomass as well as soil water status in order to investigate the ecophysiological responses of these two plant functional types. Similar patterns of photosynthetic regulations were observed during drought and rewatering for both psammophytes. They experienced stomatal restriction and nonstomatal restriction successively during drought. Photosynthetic performance recovered to the levels in well-watered plants after rewatering for 6–8 days. The C4 plant, P. centrasiaticum, exhibited the classic CO2-concentrating mechanism and more efficient thermal dissipation in the leaves, which confers more efficient CO2 assimilation and water use efficiency, alleviating drought stress, maintaining their photosynthetic advantage until water deficits became severe and quicker recovery after rewatering. In addition, P. centrasiaticum can allocate a greater proportion of root biomass in case of adequate water supply and a greater proportion of above-ground biomass in case of drought stress. This physiological adaptability and morphological adjustment underline the capacity of C4 plant P. centrasiaticum to withstand drought more efficiently and recover upon rewatering more quickly than C. pseudophragmites and dominate in the Horqin Sandy Land.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 139
Author(s):  
Valerio Cirillo ◽  
Vincenzo D’Amelia ◽  
Marco Esposito ◽  
Chiara Amitrano ◽  
Petronia Carillo ◽  
...  

Abiotic stresses will be one of the major challenges for worldwide food supply in the near future. Therefore, it is important to understand the physiological mechanisms that mediate plant responses to abiotic stresses. When subjected to UV, salinity or drought stress, plants accumulate specialized metabolites that are often correlated with their ability to cope with the stress. Among them, anthocyanins are the most studied intermediates of the phenylpropanoid pathway. However, their role in plant response to abiotic stresses is still under discussion. To better understand the effects of anthocyanins on plant physiology and morphogenesis, and their implications on drought stress tolerance, we used transgenic tobacco plants (AN1), which over-accumulated anthocyanins in all tissues. AN1 plants showed an altered phenotype in terms of leaf gas exchanges, leaf morphology, anatomy and metabolic profile, which conferred them with a higher drought tolerance compared to the wild-type plants. These results provide important insights for understanding the functional reason for anthocyanin accumulation in plants under stress.


2021 ◽  
Vol 22 (22) ◽  
pp. 12519
Author(s):  
Temesgen Assefa Gelaw ◽  
Neeti Sanan-Mishra

Drought stress causes changes in the morphological, physiological, biochemical and molecular characteristics of plants. The response to drought in different plants may vary from avoidance, tolerance and escape to recovery from stress. This response is genetically programmed and regulated in a very complex yet synchronized manner. The crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged as game-changers in modulating the plant responses to drought and other abiotic stresses. The ncRNAs interact with their targets to form potentially subtle regulatory networks that control multiple genes to determine the overall response of plants. Many long and small drought-responsive ncRNAs have been identified and characterized in different plant varieties. The miRNA-based research is better documented, while lncRNA and transposon-derived RNAs are relatively new, and their cellular role is beginning to be understood. In this review, we have compiled the information on the categorization of non-coding RNAs based on their biogenesis and function. We also discuss the available literature on the role of long and small non-coding RNAs in mitigating drought stress in plants.


2014 ◽  
Vol 27 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Mazen Alazem ◽  
Kuan-Yu Lin ◽  
Na-Sheng Lin

Accepted 29 October 2013. Abscisic acid (ABA) plays a key role in modulating plant responses to different biotic and abiotic stresses. However, the effect of ABA on virus infection is not fully understood. Here, we describe the effects of the ABA pathway on the accumulation of Bamboo mosaic virus (BaMV) and Cucumber mosaic virus (CMV) in two different hosts: Arabidopsis thaliana and Nicotiana benthamiana. We report that ABA2 plays a critical role in the accumulation of BaMV and CMV. Mutants downstream of ABA2 (aao3, abi1-1, abi3-1, and abi4-1) were susceptible to BaMV, indicating that the ABA pathway downstream of ABA2 is essential for BaMV resistance. The aba2-1 mutant decreased the accumulation of BaMV (+)RNA, (–)RNA, and coat protein, with the most dramatic effect being observed for (–)RNA. These findings were further validated by the use of virus-induced gene silencing and enzyme-linked immunosorbent assay in N. benthamiana. In addition, infecting N. benthamiana with BaMV or CMV increased ABA contents and activated the SA and ABA pathways, thereby disrupting the antagonism between these two cascades. Our findings uncover a novel role for ABA2 in supporting BaMV and CMV accumulation, distinct from the opposing role of its downstream genes.


2020 ◽  
Vol 61 (8) ◽  
pp. 1477-1492 ◽  
Author(s):  
Tao Yang ◽  
Yuke Lian ◽  
Jihong Kang ◽  
Zhiyuan Bian ◽  
Lijuan Xuan ◽  
...  

Abstract Drought represents a major threat to crop growth and yields. Strigolactones (SLs) contribute to regulating shoot branching by targeting the SUPPRESSOR OF MORE AXILLARY GROWTH2 (MAX2)-LIKE6 (SMXL6), SMXL7 and SMXL8 for degradation in a MAX2-dependent manner in Arabidopsis. Although SLs are implicated in plant drought response, the functions of the SMXL6, 7 and 8 in the SL-regulated plant response to drought stress have remained unclear. Here, we performed transcriptomic, physiological and biochemical analyses of smxl6, 7, 8 and max2 plants to understand the basis for SMXL6/7/8-regulated drought response. We found that three D53 (DWARF53)-Like SMXL members, SMXL6, 7 and 8, are involved in drought response as the smxl6smxl7smxl8 triple mutants showed markedly enhanced drought tolerance compared to wild type (WT). The smxl6smxl7smxl8 plants exhibited decreased leaf stomatal index, cuticular permeability and water loss, and increased anthocyanin biosynthesis during dehydration. Moreover, smxl6smxl7smxl8 were hypersensitive to ABA-induced stomatal closure and ABA responsiveness during and after germination. In addition, RNA-sequencing analysis of the leaves of the D53-like smxl mutants, SL-response max2 mutant and WT plants under normal and dehydration conditions revealed an SMXL6/7/8-mediated network controlling plant adaptation to drought stress via many stress- and/or ABA-responsive and SL-related genes. These data further provide evidence for crosstalk between ABA- and SL-dependent signaling pathways in regulating plant responses to drought. Our results demonstrate that SMXL6, 7 and 8 are vital components of SL signaling and are negatively involved in drought responses, suggesting that genetic manipulation of SMXL6/7/8-dependent SL signaling may provide novel ways to improve drought resistance.


2021 ◽  
Author(s):  
Yosef Fichman ◽  
Haiyan Xiong ◽  
Soham Sengupta ◽  
Rajeev K Azad ◽  
Julian M Hibberd ◽  
...  

Plants are essential for life on Earth converting light into chemical energy in the form of sugars. To adjust for changes in light intensity and quality, and to become as efficient as possible in harnessing light, plants utilize multiple light receptors, signaling, and acclimation mechanisms. In addition to altering plant metabolism, development and growth, light cues sensed by some photoreceptors, such as phytochromes, impact on many plant responses to biotic and abiotic stresses. Central for plant responses to different stresses are reactive oxygen species (ROS) that function as key signaling molecules. Recent studies demonstrated that respiratory burst oxidase homolog (RBOH) proteins that reside at the plasma membrane and produce ROS at the apoplast play a key role in plant responses to different biotic and abiotic stresses. Here we reveal that phytochrome B (phyB) and RBOHs function as part of a key regulatory module that controls ROS production, transcript expression, and plant acclimation to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol, and that phyB, RBOHD and RBOHF co-regulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Taken together, our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating ROS production, and that phyB and RBOHs function in the same pathway.


2017 ◽  
Vol 13 (11) ◽  
pp. 2289-2302 ◽  
Author(s):  
Ehsan Mohseni Fard ◽  
Behnam Bakhshi ◽  
Mohammad Farsi ◽  
Amin Mirshamsi Kakhki ◽  
Nava Nikpay ◽  
...  

MicroRNAs (miRNAs) are small endogenous regulatory RNAs that are involved in a variety of biological processes related to proliferation, development, and response to biotic and abiotic stresses.


Sign in / Sign up

Export Citation Format

Share Document