Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated?

2001 ◽  
Vol 28 (7) ◽  
pp. 685 ◽  
Author(s):  
Sally E. Smith ◽  
Sandy Dickson ◽  
F. Andrew Smith

This review brings together recent work on the coordination of transport processes between fungus and plant symbionts in arbuscular mycorrhizal (AM) symbioses, and focuses on new information on the diversity in structure and function of interfaces and their potential roles in transport processes. We consider the way that fungal activity is polarised to absorb mineral nutrients (especially phosphorus, P) in soil, transport them to the root and release them to the plant. Conversely, the fungal structures within the root appear to be specialised to absorb sugars, which the external mycelium cannot do. The external mycelium depends on a supply of lipid, transported from within the root. High affinity P transporters expressed in the root apices and root hairs of non-mycorrhizal roots, and most probably mycorrhizal roots, absorb P actively. This can result in the development of P depletion zones, so that a low concentration of P at the absorbing surfaces limits further uptake. The external hyphae of AM fungi extend well beyond the depletion zone, accessing supplies of P at a distance and in narrow soil pores, that is absorbed actively by a high affinity P transporter expressed in these small diameter hyphae. Translocation of P within the hyphae and transfer to the plant results in much higher rates of uptake (inflows) by mycorrhizal than non-mycorrhizal roots. The possible role of polyphosphate (polyP) in this process is discussed in the light of new data. Within the root, P is lost from the fungal structures to the interfacial apoplast by an unknown mechanism, and is absorbed by the root cortical cells. The expression of a high affinity P transporter and H + -ATPase in arbuscule-containing cells indicates that these are probably the sites of fungus/plant P transfer. The site of sugar transfer from plant to fungus has not yet been established. At the whole plant level, plant uptake systems located in the youngest regions of the root are positioned to absorb P from undepleted soil, into which the root apex has just grown. In older regions of the roots, colonised by mycorrhizal fungi, the external mycelium will take over the absorptive role and overcome the difficulties posed by the slow diffusion of P in soil.


Botany ◽  
2008 ◽  
Vol 86 (9) ◽  
pp. 1009-1019 ◽  
Author(s):  
Maria Manjarrez ◽  
F. Andrew Smith ◽  
Petra Marschner ◽  
Sally E. Smith

For the first time, the phenotypes formed in the reduced mycorrhizal colonization (rmc) Solanum lycopersicum  L. (tomato) mutant with different arbuscular mycorrhizal (AM) fungi were used to explore the potential of different fungal structures to support development of external fungal mycelium and spores. The life cycle of AM fungi with rmc was followed for up to 24 weeks. Results showed that production of external mycelium was slight and transitory for those fungi that did not penetrate the roots of rmc (Pen–) ( Glomus intraradices DAOM181602 and Glomus etunicatum ). For fungi that penetrated the root epidermis and hypodermis (Coi–, Glomus coronatum and Scutellospora calospora ) the mycelium produced varied in size, but was always smaller than with the wild-type 76R. Spores were formed by these fungi with 76R but not with rmc. The only fungus forming a Myc+ phenotype with rmc, G. intraradices WFVAM23, produced as much mycelium with rmc as with 76R. We observed lipid accumulation in hyphae and vesicles in both plant genotypes with this fungus. Mature spores were formed with 76R. However, with rmc, spores remained small and (presumably) immature for up to 24 weeks. We conclude that significant carbon transfer from plant to fungus can occur in Coi– interactions with rmc in which no cortical colonization occurs. We speculate that both carbon transfer and root signals are required for mature spores to be produced.



2021 ◽  
Vol 22 (24) ◽  
pp. 13677
Author(s):  
Kiril Mishev ◽  
Petre I. Dobrev ◽  
Jozef Lacek ◽  
Roberta Filepová ◽  
Bistra Yuperlieva-Mateeva ◽  
...  

Belowground interactions of plants with other organisms in the rhizosphere rely on extensive small-molecule communication. Chemical signals released from host plant roots ensure the development of beneficial arbuscular mycorrhizal (AM) fungi which in turn modulate host plant growth and stress tolerance. However, parasitic plants have adopted the capacity to sense the same signaling molecules and to trigger their own seed germination in the immediate vicinity of host roots. The contribution of AM fungi and parasitic plants to the regulation of phytohormone levels in host plant roots and root exudates remains largely obscure. Here, we studied the hormonome in the model system comprising tobacco as a host plant, Phelipanche spp. as a holoparasitic plant, and the AM fungus Rhizophagus irregularis. Co-cultivation of tobacco with broomrape and AM fungi alone or in combination led to characteristic changes in the levels of endogenous and exuded abscisic acid, indole-3-acetic acid, cytokinins, salicylic acid, and orobanchol-type strigolactones. The hormonal content in exudates of broomrape-infested mycorrhizal roots resembled that in exudates of infested non-mycorrhizal roots and differed from that observed in exudates of non-infested mycorrhizal roots. Moreover, we observed a significant reduction in AM colonization of infested tobacco plants, pointing to a dominant role of the holoparasite within the tripartite system.



2001 ◽  
Vol 28 (5) ◽  
pp. 391 ◽  
Author(s):  
Sarah M. Ayling ◽  
Sally E. Smith ◽  
F. Andrew Smith

The effect of colonisation by arbuscular mycorrhizal (AM) fungi on the relationship between phosphorus (P) uptake and root membrane electric potential difference (p.d.) was investigated in leek (Allium porrum L.). Plants were grown, with or without the AM fungus Scutellospora calospora (Nicolson and Gerdemann) Walker and Sanders, in soil. P uptake and root p.d. were correlated; plants with the highest P concentration in the shoot had the most negative p.d. This relationship was strong in non-mycorrhizal leeks (r2 = 84–98%), but weaker in mycorrhizal leeks (r2 = 55–64%), consistent with the idea that in mycorrhizal roots the fungal hyphae are the principal site of P uptake.



1986 ◽  
Vol 64 (10) ◽  
pp. 2216-2226 ◽  
Author(s):  
Yves Prin ◽  
Mireille Rougier

The aim of the present study was to investigate the Alnus root surface using seedlings grown axenically. This study has focused on root zones where infection by the symbiotic actinomycete Frankia takes place. The zones examined extend from the root cap to the emerging root hair zone. The root cap ensheaths the Alnus root apex and extends over the root surface as a layer of highly flattened cells closely appressed to the root epidermal cell wall. These cells contain phenolic compounds as demonstrated by various histochemical tests. They are externally bordered by a thin cell wall coated by a thin mucilage layer. The root cap is ruptured when underlying epidermal cells elongate, and cell remnants are still found in the emerging root hair zone. Young emerging root hairs are bordered externally by a cell wall covered by a thin mucilage layer which reacts positively to the tests used for the detection of polysaccharides, glycoproteins, and anionic sites. The characteristics of the Alnus root surface and the biological function of mucilage and phenols present at the root surface are discussed in relation to the infection process.



2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Christopher Ngosong ◽  
Elke Gabriel ◽  
Liliane Ruess

Biomass estimation of arbuscular mycorrhiza (AM) fungi, widespread plant root symbionts, commonly employs lipid biomarkers, predominantly the fatty acid 16:1ω5. We briefly reviewed the application of this signature fatty acid, followed by a case study comparing biochemical markers with microscopic techniques in an arable soil following a change to AM non-host plants after 27 years of continuous host crops, that is, two successive cropping seasons with wheat followed by amaranth. After switching to the non-host amaranth, spore biomass estimated by the neutral lipid fatty acid (NLFA) 16:1ω5 decreased to almost nil, whereas microscopic spore counts decreased by about 50% only. In contrast, AM hyphal biomass assessed by the phospholipid (PLFA) 16:1ω5 was greater under amaranth than wheat. The application of PLFA 16:1ω5 as biomarker was hampered by background level derived from bacteria, and further enhanced by its incorporation from degrading spores used as microbial resource. Meanwhile, biochemical and morphological assessments showed negative correlation for spores and none for hyphal biomass. In conclusion, the NLFA 16:1ω5 appears to be a feasible indicator for AM fungi of the Glomales group in the complex field soils, whereas the use of PLFA 16:1ω5 for hyphae is unsuitable and should be restricted to controlled laboratory studies.



2015 ◽  
Vol 43 (2) ◽  
pp. 488-493
Author(s):  
Zhaoyong SHI ◽  
Xubin YIN ◽  
Bede MICKAN ◽  
Fayuan WANG ◽  
Ying ZHANG ◽  
...  

Arbuscular mycorrhiza (AM) fungi are considered as an important factor in predicting plants and ecosystem responses to climate changes on a global scale. The Tibetan Plateau is the highest region on Earth with abundant natural resources and one of the most sensitive region to climate changes. To evaluate the complex response of arbuscular mycorrhizal fungi colonization and spore density to climate changes, a reciprocal translocation experiment was employed in Tibetan Plateau. The reciprocal translocation of quadrats to AM colonization and spore density were dynamic. Mycorrhizal colonization frequency presented contrary changed trend with elevations of quadrat translocation. Colonization frequency reduced or increased in majority quadrats translocated from low to high or from high to low elevation. Responses of colonization intensity to translocation of quadrats were more sensitive than colonization frequency. Arbuscular colonization showed inconsistent trend in increased or decreased quadrat. Vesicle colonization decreased with changed of quadrat from low to high elevations. However, no significant trend was observed. Although spore density was dynamic with signs of decreasing or increasing in translocated quadrats, the majority enhanced and declined respectively in descent and ascent quadrat treatments. It is crucial to understand the interactions between AM fungi and prairie grasses to accurately predict effects of climate change on these diverse and sensitive ecosystems. This study provided an opportunity for understanding the effect of climate changes on AM fungi.



Author(s):  
Wei Fu ◽  
Baodong Chen ◽  
Matthias Rillig ◽  
Wang Ma ◽  
Chong Xu ◽  
...  

Mutualistic associations between plants and arbuscular mycorrhizal (AM) fungi may have profound influences on their response to climate changes. Existing theories evaluate the effects of interdependency and environmental filtering on plant-AM fungal community dynamics separately; however, abrupt environmental changes such as climate extremes can provoke duo-impacts on the metacommunity simultaneously. Here, we experimentally tested the relevance of plant and AM fungal community responses to extreme drought (chronic or intense) in a cold temperate grassland. Irrespective of drought intensities, plant species richness and productivity responses were significantly and positively correlated with AM fungal richness and also served as best predictors of AM fungal community shifts. Notably, the robustness of this community synergism increased with drought intensity, likely reflecting increased community interdependence. Network analysis showed a key role of Glomerales in AM fungal interaction with plants, suggesting specific plant-AM fungal pairing. Thus, community interdependence may underpin climate change impact on plant-AM fungal diversity patterns in grasslands.



2021 ◽  
Vol 7 (8) ◽  
pp. 671
Author(s):  
Xiao Lou ◽  
Xiangyu Zhang ◽  
Yu Zhang ◽  
Ming Tang

The simultaneous effects of arbuscular mycorrhizal (AM) fungi and abscisic acid (ABA) on the tolerance of plants to heavy metal (HM) remain unclear. A pot experiment was carried out to clarify the effects of simultaneous applications of AM fungi and ABA on plant growth, Zn accumulation, endogenous ABA contents, proline metabolism, and the oxidative injury of black locust (Robinia pseudoacacia L.) exposed to excess Zn stress. The results suggested that exogenously applied ABA positively enhanced AM colonization, and that the growth of plants only with AM fungi was improved by ABA application. Under Zn stress, AM inoculation and ABA application increased the ABA content in the root/leaf (increased by 48–172% and 92%, respectively) and Zn content in the root/shoot (increased by 63–152% and 61%, respectively) in AM plants, but no similar trends were observed in NM plants. Additionally, exogenous ABA addition increased the proline contents of NM roots concomitantly with the activities of the related synthases, whereas it reduced the proline contents and the activity of Δ1-pyrroline-5-carboxylate synthetase in AM roots. Under Zn stress, AM inoculation and ABA application decreased H2O2 contents and the production rate of O2, to varying degrees. Furthermore, in the roots exposed to Zn stress, AM inoculation augmented the activities of SOD, CAT, POD and APX, and exogenously applied ABA increased the activities of SOD and POD. Overall, AM inoculation combined with ABA application might be beneficial to the survival of black locust under Zn stress by improving AM symbiosis, inhibiting the transport of Zn from the roots to the shoots, increasing the distribution of ABA in roots, and stimulating antioxidant defense systems.



2017 ◽  
Vol 9 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Khirood DOLEY ◽  
Mayura DUDHANE ◽  
Mahesh BORDE

Sclerotium rolfsii (Sacc.) is the causal agent of stem-rot in groundnut (Arachis hypogaea L.)crop. With the increase in demand for the groundnut, control of stem-rot efficiently by microbial strains is fast becoming inevitable as the conventional system of chemicals is degrading our ecosystem. This investigation here emphasizes on inoculation of arbuscular mycorrhizal fungi (AMF) and Trichoderma species for growth achievement and disease control. The present investigation showed that these microbial strains were found to be worth applying as they stimulated growth and decreased harmful effects of S. rolfsii (cv. ‘Western-51’). The increased biochemical parameters and antioxidant activities also indicated their defence related activities in groundnut plants. In spite of positive attributes meted out by these microbial strains towards groundnut crop, the interaction among AM fungi and Trichoderma species seemed to be less co-operative between each other which were noted when mycorrhizal dependency and percent root colonization were observed. However, in summary more practical application of low-input AM fungi along with Trichoderma species may be needed for the advancement of modern agricultural systems.



2002 ◽  
Vol 29 (5) ◽  
pp. 595 ◽  
Author(s):  
Sergey Shabala ◽  
Andrew Knowles

Oscillatory patterns in H+, K+, Ca2+ and Cl- uptake were observed at different regions of the root surface, including root hairs, using a non-invasive ion flux measuring technique (the MIFE™ technique). To our knowledge, this is the first report of ultradian oscillations in nutrient acquisition in the mature root zone. Oscillations of the largest magnitude were usually measured in the elongation region, 2–4 mm from the root apex. There were usually at least two oscillatory components present for each ion measured: fast, with periods of several minutes; and slow, with periods of 50–80 min. Even within the same functional zone, the periods of ion flux oscillations were significantly different, suggesting that they are driven by some internal mechanisms located in each cell rather than originating from one ‘central clock pacemaker’. There were also significant changes in the oscillatory characteristics (both periods and amplitudes) of fluxes from a single small cluster of cells over time. Analysis of phase shifts between oscillations in different ions suggested that rhythmic activity of a plasma membrane H+-pump may be central to observed rhythmic nutrient acquisition by plant roots. We discuss the possible adaptive significance of such an oscillatory strategy for root nutrient acquisition.



Sign in / Sign up

Export Citation Format

Share Document