Cryoprotectant role of exopolysaccharide of Pseudomonas sp. ID1 in the vitrification of IVM cow oocytes

2019 ◽  
Vol 31 (9) ◽  
pp. 1507 ◽  
Author(s):  
Núria Arcarons ◽  
Meritxell Vendrell-Flotats ◽  
Marc Yeste ◽  
Elena Mercade ◽  
Manel López-Béjar ◽  
...  

Biological molecules isolated from organisms that live under subzero conditions could be used to protect oocytes from cryoinjuries suffered during cryopreservation. This study examined the cryoprotectant role of exopolysaccharides of Pseudomonas sp. ID1 (EPS ID1) in the vitrification of prepubertal and adult cow oocytes. IVM oocytes were vitrified and warmed in media supplemented with 0, 1, 10, 100 or 1000µgmL−1 EPS ID1. After warming, oocytes were fertilised and embryo development, spindle morphology and the expression of several genes in Day 8 blastocysts were assessed. Vitrification led to significantly lower proportion of prepubertal oocytes exhibiting a normal spindle configuration. In fresh control oocytes and most groups of vitrified adult oocytes, similar percentages of oocytes with a normal spindle configuration were observed. Percentages of Day 8 blastocysts were similar for prepubertal oocytes vitrified in the absence or presence of 1 or 10µgmL−1 EPS ID1 and for adult oocytes vitrified in the presence of 10µgmL−1 EPS ID1 compared with non-vitrified oocytes. EPS ID1 supplementation had no effect on solute carrier family 2 member 3 (SLC2A3), ubiquitin-conjugating enzyme E2A (UBE2A) and histone deacetylase 1 (HDAC1) expression in Day 8 blastocysts form adult oocytes. However, supplementation with 10 and 100µgmL−1 EPS ID1 led to increased expression of genes involved in epigenetic modifications (DNA methyltransferase 3 alpha (DNMT3A) and K (lysine) acetyltransferase 2A (KAT2A)) and apoptosis (BCL2 associated X apoptosis regulator (BAX) and BCL2-like 1 (BCL2L1)). The lowest BAX:BCL2L1 ratio was found in the 10µgmL−1 EPS ID1-supplemented group. The results suggest that 10µgmL−1 EPS ID1 added to vitrification and warming media may help protect bovine oocytes against cryodamage.

2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


2020 ◽  
Vol 32 (7) ◽  
pp. 690
Author(s):  
Thais P. Pontelo ◽  
Sarah A. D. Rodrigues ◽  
Taynan S. Kawamoto ◽  
Ligiane O. Leme ◽  
A. C. M. M. Gomes ◽  
...  

We aimed to analyse the histone acetylation status and expression profile of genes involved in histone acetylation (histone acetyltransferase 1 (HAT1), lysine acetyltransferase 2A (KAT2A), histone deacetylase 1(HDAC1), HDAC2 and HDAC3) in bovine oocytes of different competences during invitro maturation (IVM). Cumulus–oocyte complexes were recovered from two groups of follicles: minor follicles (1.0–3.0mm in diameter), classified as low competence (LC) and large follicles (6.0–8.0mm in diameter) classified as high competence (HC). Oocytes were submitted to IVM for 0, 8 and 24h and stored for analysis. Acetylation status of histone H4 on lysine K5, K6, K12 and K16 was assessed by immunohistochemistry. For gene expression, mRNA levels were determined by real-time quantitative polymerase chain reaction. All oocytes, regardless of their competence, showed a gradual decrease (P<0.05) in acetylation signals during IVM. From 0 to 8h of maturation, an increase (P<0.05) in the relative abundance of HAT1 mRNA was observed only in the HC oocytes. In this group, higher (P<0.05) mRNA levels of HDAC1 at 8h of maturation were also observed. In conclusion, in the present study, LC oocytes were shown to have adequate acetylation levels for the resumption and progression of meiosis; however, these oocytes do not have the capacity to synthesise RNA during IVM as the HC oocytes do.


2020 ◽  
Vol 28 ◽  
Author(s):  
Seyed Mohammad Nabavi ◽  
Kasi Pandima Devi ◽  
Sethuraman Sathya ◽  
Ana Sanches-Silva ◽  
Listos Joanna ◽  
...  

: Obesity is a major health concern for a growing fraction of the population, with the prevalence of obesity and its related metabolic disorders not being fully understood. Over the last decade, many attempts have been undertaken to understand the mechanisms at the basis of this condition, in which the accumulation of fat occurring in adipose tissue, leads to the pathogenesis of obesity related disorders. Among the most recent studies, those on Peroxisome Proliferator Activated Receptors (PPARs) revealed that these nuclear receptor proteins acting as transcription factors, among others, regulate the expression of genes involved in energy, lipid, and glucose metabolisms, and chronic inflammation. The three different isotypes of PPARs, with different tissue expression and ligand binding specificity, exert similar or overlapping functions directly or indirectly linked to obesity. In this study, we reviewed the available scientific reports concerning the PPARs structure and functions, especially in obesity, considering both natural and synthetic ligands and their role in the therapy of obesity and obesity-associated disorders. In the whole, the collected data show that there are both natural and synthetic compounds that show beneficial promising activity as PPAR agonists in chronic diseases related to obesity.


Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 902
Author(s):  
Eva Costanzi ◽  
Carolina Simioni ◽  
Gabriele Varano ◽  
Cinzia Brenna ◽  
Ilaria Conti ◽  
...  

Extracellular vesicles (EVs) have attracted interest as mediators of intercellular communication following the discovery that EVs contain RNA molecules, including non-coding RNA (ncRNA). Growing evidence for the enrichment of peculiar RNA species in specific EV subtypes has been demonstrated. ncRNAs, transferred from donor cells to recipient cells, confer to EVs the feature to regulate the expression of genes involved in differentiation, proliferation, apoptosis, and other biological processes. These multiple actions require accuracy in the isolation of RNA content from EVs and the methodologies used play a relevant role. In liver, EVs play a crucial role in regulating cell–cell communications and several pathophysiological events in the heterogeneous liver class of cells via horizontal transfer of their cargo. This review aims to discuss the rising role of EVs and their ncRNAs content in regulating specific aspects of hepatocellular carcinoma development, including tumorigenesis, angiogenesis, and tumor metastasis. We analyze the progress in EV-ncRNAs’ potential clinical applications as important diagnostic and prognostic biomarkers for liver conditions.


Author(s):  
Cecilia Valencia ◽  
Felipe Alonso Pérez ◽  
Carola Matus ◽  
Ricardo Felmer ◽  
María Elena Arias

Abstract The present study evaluated the mechanism by which protein synthesis inhibitors activate bovine oocytes. The aim was to analyze the dynamics of MPF and MAPKs. MII oocytes were activated with ionomycin (Io), ionomycin+anisomycin (ANY) and ionomycin+cycloheximide (CHX) and by in vitro fertilization (IVF). The expression of cyclin B1, p-CDK1, p-ERK1/2, p-JNK, and p-P38 were evaluated by immunodetection and the kinase activity of ERK1/2 was measured by enzyme assay. Evaluations at 1, 4, and 15 hours postactivation (hpa) showed that the expression of cyclin B1 was not modified by the treatments. ANY inactivated MPF by p-CDK1Thr14-Tyr15 at 4 hpa (P < 0.05), CHX increased pre-MPF (p-CDK1Thr161 and p-CDK1Thr14-Tyr15) at 1 hpa and IVF increased p-CDK1Thr14-Tyr15 at 17 hours postfertilization (hpf) (P < 0.05). ANY and CHX reduced the levels of p-ERK1/2 at 4 hpa (P < 0.05) and its activity at 4 and 1 hpa, respectively (P < 0.05). Meanwhile, IVF increased p-ERK1/2 at 6 hpf (P < 0.05); however, its kinase activity decreased at 6 hpf (P < 0.05). p-JNK in ANY, CHX, and IVF oocytes decreased at 4 hpa (P < 0.05). p-P38 was only observed at 1 hpa, with no differences between treatments. In conclusion, activation of bovine oocytes by ANY, CHX, and IVF inactivates MPF by CDK1-dependent specific phosphorylation without cyclin B1 degradation. ANY or CHX promoted this inactivation, which seemed to be more delayed in the physiological activation (IVF). Both inhibitors modulated MPF activity via an ERK1/2-independent pathway, whereas IVF activated the bovine oocytes via an ERK1/2-dependent pathway. Finally, ANY does not activate the JNK and P38 kinase pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Krystyna Ślaska-Kiss ◽  
Nikolett Zsibrita ◽  
Mihály Koncz ◽  
Pál Albert ◽  
Ákos Csábrádi ◽  
...  

AbstractTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity. One of the approaches proposed to suppress methylation at unwanted sites is to use MTase variants with reduced DNA binding affinity. In this work we investigated how methylation specificity of chimeric MTases containing variants of the CG-specific prokaryotic MTase M.SssI fused to zinc finger or dCas9 targeting domains is influenced by mutations affecting catalytic activity and/or DNA binding affinity of the MTase domain. Specificity of targeted DNA methylation was assayed in E. coli harboring a plasmid with the target site. Digestions of the isolated plasmids with methylation sensitive restriction enzymes revealed that specificity of targeted DNA methylation was dependent on the activity but not on the DNA binding affinity of the MTase. These results have implications for the design of strategies of targeted DNA methylation.


2021 ◽  
Vol 22 (11) ◽  
pp. 5516
Author(s):  
Qiting Zhang ◽  
Ziyan Wang ◽  
Xinyuan Chen ◽  
Haoxiang Qiu ◽  
Yifan Gu ◽  
...  

Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.


Sign in / Sign up

Export Citation Format

Share Document