Early pregnancy factor has immunosuppressive and growth factor properties

1992 ◽  
Vol 4 (4) ◽  
pp. 411 ◽  
Author(s):  
H Morton ◽  
AC Cavanagh ◽  
S Athanasas-Platsis ◽  
KA Quinn ◽  
BE Rolfe

Early pregnancy factor (EPF) was first described as a pregnancy-associated substance, although recent studies suggest a more general link with cell development. It is a product of actively dividing cells and its apparent functional importance to them suggests its potential as a regulator of cell proliferation. The recent discovery of EPF in platelets has provided a comparatively rich and readily available source of EPF. The purification procedures employed to isolate EPF from this source have also been applied to pregnancy serum and urine, medium conditioned by oestrous mouse ovaries (stimulated with prolactin and embryo-conditioned medium), medium conditioned by tumour cells, and serum from rats 24 h after partial hepatectomy (PH). In all instances, biological activity followed the same pattern throughout. Furthermore, the final active reversed-phase high-performance liquid chromatography fraction from all sources was bound specifically by immobilized anti-EPF monoclonal antibodies (MAbs), indicating that the active fractions produced from these diverse sources are very closely related, if not identical. Some differences have been observed in the behaviour of EPF in various conditions. EPF is produced by proliferating tumour cells and by liver cells post-PH, and passive immunization studies with anti-EPF MAbs have shown that these cells need EPF for survival. In contrast, EPF has not been detected as a product of the pre-embryo, and addition of anti-EPF MAbs to embryo cultures does not adversely affect development from the 2-cell to the blastocyst stage. Although the pre-embryo is not dependent on EPF for its development in vitro, neutralization of EPF in vivo by anti-EPF MAbs retards its development. Thus, EPF appears to play an indirect role in maintaining the pre-embryo. By virtue of its ability to suppress the delayed-type hypersensitivity reaction, it has been suggested that EPF might act as an immunological response modifier of the maternal immune system. Alternatively, the effect of EPF on lymphocytes may be to reduce the expression of all or some cytokines and this could inhibit development. Whether or not EPF acts more directly as an autocrine growth factor from around the time of implantation, when the embryo first begins synthesis of EPF, is not known and remains to be investigated.

2004 ◽  
Vol 383 (1) ◽  
pp. 149-158 ◽  
Author(s):  
Dawn C.-I. KOH ◽  
A. ARMUGAM ◽  
K. JEYASEELAN

The NGF (nerve growth factor) from Naja sputatrix has been purified by gel filtration followed by reversed-phase HPLC. The protein showed a very high ability to induce neurite formation in PC12 cells relative to the mouse NGF. Two cDNAs encoding isoforms of NGF have been cloned and an active recombinant NGF, sputa NGF, has been produced in Escherichia coli as a His-tagged fusion protein. Sputa NGF has been found to be non-toxic under both in vivo and in vitro conditions. The induction of neurite outgrowth by this NGF has been found to involve the high-affinity trkA–p75NTR complex of receptors. The pro-survival mechanism of p75NTR has been mediated by the activation of nuclear factor κB gene by a corresponding down-regulation of inhibitory κB gene. Real-time PCR and protein profiling (by surface-enhanced laser-desorption–ionization time-of-flight) have confirmed that sputa NGF up-regulates the expression of the endogenous NGF in PC12 cells. Preliminary microarray analysis has also shown that sputa NGF is capable of promoting additional beneficial effects such as the up-regulation of arginine vasopressin receptor 1A, voltage-dependent T-type calcium channel. Hence, sputa NGF forms a new and useful NGF.


2009 ◽  
Vol 77 (4) ◽  
pp. 1514-1523 ◽  
Author(s):  
Sudipta Bhowmick ◽  
Tuhina Mazumdar ◽  
Nahid Ali

ABSTRACT BALB/c mice immunized intraperitoneally (i.p.) and intravenously (i.v.) with Leishmania donovani promastigote membrane antigens (LAg), either free or encapsulated in liposomes, were protected against challenge infection with L. donovani, whereas mice immunized by the subcutaneous (s.c.) and intramuscular routes were not protected. Protected mice showed strong parasite resistance in both the liver and spleen, along with enhanced immunoglobulin G2a and delayed-type hypersensitivity responses. Again, mice vaccinated through the i.p. and i.v. routes showed high levels of NO production after challenge infection. s.c. vaccination resulted in an increased capacity of the spleen cells to produce prechallenge transforming growth factor β (TGF-β) levels during the in vitro antigen recall response, whereas i.p. immunization induced production of prechallenge gamma interferon, interleukin-12 (IL-12), and IL-4 levels, with a Th1 bias. Exposure to antigen-stimulated splenocyte supernatants of i.p. but not s.c. immunized mice activated macrophages for in vitro parasite killing. As an enhanced level of TGF-β was detected in supernatants from unprotected s.c. immunized mice, neutralization by anti-TGF-β antibody enhanced in vitro macrophage killing activity. The suppressive role of this cytokine was evaluated in vivo by vaccination with liposomal LAg and anti-TGF-β antibody. Upon parasite challenge, these animals showed significant protection in both the liver and spleen. Moreover, the addition of recombinant TGF-β in splenocyte supernatants of i.p. immunized mice in vitro as well as in vivo inhibited the protective ability of the macrophages by the i.p. route. Thus, the induction of high prechallenge TGF-β limits the efficacy of vaccination by routes that are nonprotective.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


Author(s):  
Eishin Yaoita ◽  
Masaaki Nameta ◽  
Yutaka Yoshida ◽  
Hidehiko Fujinaka

AbstractFibroblast growth factor 2 (FGF2) augments podocyte injury, which induces glomerulosclerosis, although the mechanisms remain obscure. In this study, we investigated the effects of FGF2 on cultured podocytes with interdigitating cell processes in rats. After 48 h incubation with FGF2 dynamic changes in the shape of primary processes and cell bodies of podocytes resulted in the loss of interdigitation, which was clearly shown by time-lapse photography. FGF2 reduced the gene expressions of constituents of the slit diaphragm, inflections of intercellular junctions positive for nephrin, and the width of the intercellular space. Immunostaining for the proliferation marker Ki-67 was rarely seen and weakly stained in the control without FGF2, whereas intensely stained cells were frequently found in the presence of FGF2. Binucleation and cell division were also observed, although no significant increase in cell number was shown. An in vitro scratch assay revealed that FGF2 enhanced migration of podocytes. These findings show that FGF2 makes podocytes to transition from the quiescent state into the cell cycle and change their morphology due to enhanced motility, and that the culture system in this study is useful for analyzing the pathological changes of podocytes in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir Sissaoui ◽  
Stuart Egginton ◽  
Ling Ting ◽  
Asif Ahmed ◽  
Peter W. Hewett

AbstractPlacenta growth factor (PlGF) is a pro-inflammatory angiogenic mediator that promotes many pathologies including diabetic complications and atherosclerosis. Widespread endothelial dysfunction precedes the onset of these conditions. As very little is known of the mechanism(s) controlling PlGF expression in pathology we investigated the role of hyperglycaemia in the regulation of PlGF production in endothelial cells. Hyperglycaemia stimulated PlGF secretion in cultured primary endothelial cells, which was suppressed by IGF-1-mediated PI3K/Akt activation. Inhibition of PI3K activity resulted in significant PlGF mRNA up-regulation and protein secretion. Similarly, loss or inhibition of Akt activity significantly increased basal PlGF expression and prevented any further PlGF secretion in hyperglycaemia. Conversely, constitutive Akt activation blocked PlGF secretion irrespective of upstream PI3K activity demonstrating that Akt is a central regulator of PlGF expression. Knock-down of the Forkhead box O-1 (FOXO1) transcription factor, which is negatively regulated by Akt, suppressed both basal and hyperglycaemia-induced PlGF secretion, whilst FOXO1 gain-of-function up-regulated PlGF in vitro and in vivo. FOXO1 association to a FOXO binding sequence identified in the PlGF promoter also increased in hyperglycaemia. This study identifies the PI3K/Akt/FOXO1 signalling axis as a key regulator of PlGF expression and unifying pathway by which PlGF may contribute to common disorders characterised by endothelial dysfunction, providing a target for therapy.


Sign in / Sign up

Export Citation Format

Share Document