327 UNSATURATED AND SATURATED NON-ESTERIFIED FATTY ACIDS DIFFERENTLY AFFECT LIPID STORAGE AND DEVELOPMENTAL COMPETENCE OF BOVINE OOCYTES

2010 ◽  
Vol 22 (1) ◽  
pp. 319
Author(s):  
H. Aardema ◽  
P. Vos ◽  
H. Knijn ◽  
B. Roelen ◽  
B. Gadella

Fertility in high-producing dairy cows has declined over the last decades. An increased serum and follicular fluid concentration of non-esterified fatty acids (NEFAs), due to body fat mobilization in the early post partum period, has been postulated as a cause for this fertility decline. NEFA concentrations and composition may change in the environment of the oocyte and thus might affect the storage depots of esterified NEFAs in the oocyte. We exposed COCs to unsaturated (oleic acid) or saturated (palmitic acid) NEFAs during maturation and subsequently examined lipid droplets and developmental competence of the oocytes. COCs from 3-8 mm follicles of slaughterhouse ovaries were cultured in control maturation medium (TCM-199) and medium containing 100, 250, or 500 μM oleic and/or palmitic acid (10 mM fatty acid was bound to 10% BSA fatty acid free). These concentrations were based on in vivo measured NEFA concentrations in follicular fluid in the early post partum period (Leroy et al. 2005 Reproduction 130, 485-495). After 23 h of maturation, COCs were fertilized (450 per group) and cultured till the blastocyst stage, or fixed (80 per group) for lipid droplet staining with C1-BODIPY® 500/510 C12. Confocal microscopy was performed to determine lipid droplet size in (im(mean) and the number of lipid droplets per oocyte. Lipid droplet number and the log of size were analyzed using analysis of variances with condition as fixed factor. Variation was described as the standard error of the mean. Similar concentrations of palmitic or oleic acid had an opposite effect on the size of lipid droplets in oocytes. The number of lipid droplets dramatically decreased in oocytes exposed to 500 μM palmitic acid (178 ± 20), whereas the number increased after exposure to 500 μM oleic acid (554 ± 15). The number of lipid droplets of oocytes exposed to a combination of 250 μM palmitic acid and 250 μM oleic acid (421 ± 23) was comparable with the control and lower oleic and palmitic acid concentrations. Exposure of COCs to palmitic acid during maturation resulted in reduced blastocyst development in a dose-dependent manner (from 18 ± 1.4%, 13 ± 2.4% to 2.8 ± 1.3% after exposure to 500 μM) when compared to control (20 ± 2.2%) or oocytes exposed to oleic acid (from 23 ± 1.6%, 23 ± 3.3% till 28 ± 3.3%). Negative effects of palmitic acid were counteracted by simultaneous exposure to oleic acid during in vitro oocyte maturation (26 ± 5.5%). We conclude that palmitic acid elicited negative effects on early embryonic development, possibly because it induces a reduction in the number of lipid droplets. These adverse effects can be offset by oleic acid during maturation. Moreover a high oleic acid concentration increased the number and size of lipid droplets of oocytes. The regulatory pathways involved in the noted differences in lipid storage features of in vitro-matured oocytes as well as the adverse effects of palmitic acid on early embryonic development are currently under research.

Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 485-495 ◽  
Author(s):  
J L M R Leroy ◽  
T Vanholder ◽  
B Mateusen ◽  
A Christophe ◽  
G Opsomer ◽  
...  

In this study concentration and composition of non-esterified fatty acids (NEFA) in follicular fluid (FF) of high-yielding dairy cows were determined during the period of negative energy balance (NEB) early post partum. NEFA were then added during in vitro maturation at concentrations measured previously in FF to evaluate their effect on the oocyte’s developmental competence. At 16 and 44 days post partum, FF of the dominant follicle and blood were collected from nine high-yielding dairy cows. Samples were analysed for NEFA concentration and composition. NEFA concentrations in FF (0.2–0.6 mmol/l) during NEB remained ± 40% lower compared with serum (0.4–1.2 mmol/l). The NEFA composition differed significantly between serum and FF with oleic acid (OA), palmitic acid (PA) and stearic acid (SA) being the predominant fatty acids in FF. Based on these results, 5115 oocytes were matured for 24 h in serum-free media with or without (negative control) the addition of 0.200 mmol/l OA, 0.133 mmol/l PA or 0.067 mmol/l SA dissolved in ethanol or ethanol alone (positive control). Matured oocytes were fertilized and cultured for 7 days in SOF medium. Addition of PA or SA during oocyte maturation had negative effects on maturation, fertilization and cleavage rate and blastocyst yield. More (late) apoptotic cumulus cells were observed in cumulus–oocyte complexes matured in the presence of SA or PA. Ethanol or OA had no effect. These in vitro results suggest that NEB may hamper fertility of high-yielding dairy cows through increased NEFA concentrations in FF affecting oocyte quality.


2004 ◽  
Vol 107 (6) ◽  
pp. 625-629 ◽  
Author(s):  
Christopher A. R. SAINSBURY ◽  
Naveed SATTAR ◽  
John M. C. CONNELL ◽  
Chris HILLIER ◽  
John R. PETRIE

Elevated circulating levels of NEFAs (non-esterified fatty acids) are associated with states of insulin resistance and increased risk of vascular disease. Previous animal and human studies have demonstrated NEFA-induced endothelial dysfunction of large conduit arteries, reversible by the antioxidant ascorbic acid. We therefore investigated the effect of NEFAs on carbachol-induced endothelium-dependent vasodilation of rat resistance arteries in vitro using the technique of wire myography. In addition, we investigated the effect of co-incubation of NEFAs and ascorbic acid. Cumulative concentration–response curves to carbachol (endothelium-dependent vasodilation) and SNAP (S-nitroso-N-acetyl-DL-penicillamine; endothelium-independent vasodilation) were constructed. Those to carbachol were repeated following a 30 min incubation with either oleic acid (10−4 M) or palmitic acid (10−4 M), demonstrating significant impairment of endothelium-dependent vasodilation with both [P<0.05, comparison of pD2 values (the negative log concentration of agonist required to effect a 50% response)]. A cumulative concentration–response curve to carbachol was repeated following co-incubation with palmitic acid (10−4 M) and the antioxidant ascorbic acid (10−5 M), demonstrating an abolition of the previously observed endothelial dysfunction induced by palmitic acid. There was no impairment of vasodilation to SNAP following NEFA incubation. We conclude that NEFAs directly impair endothelial function in rat resistance arteries via an increase in oxidative stress at the vascular endothelium.


1980 ◽  
Vol 191 (2) ◽  
pp. 637-643 ◽  
Author(s):  
William W. Christie ◽  
Margaret L. Hunter

The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.


2020 ◽  
Vol 9 (8) ◽  
pp. 2615
Author(s):  
Carlos López-Gómez ◽  
Concepción Santiago-Fernández ◽  
Sara García-Serrano ◽  
Eva García-Escobar ◽  
Carolina Gutiérrez-Repiso ◽  
...  

Background: The effects of different types of fatty acids on the gene expression of key players in the IRS1/PI3K signaling pathway have been poorly studied. Material and Methods: We analyzed IRS1, p85α, and p110β mRNA expression and the fatty acid composition of phospholipids in visceral adipose tissue from patients with morbid obesity and from non-obese patients. Moreover, we analyzed the expression of those genes in visceral adipocytes incubated with oleic, linoleic, palmitic and dosahexaenoic acids. Results: We found a reduced IRS1 expression in patients with morbid obesity, independent of insulin resistance, and a reduced p110β expression in those with lower insulin resistance. A positive correlation was found between p85α and stearic acid, and between IRS1 and p110β with palmitic and dosahexaenoic acid. In contrast, a negative correlation was found between p85α and oleic acid, and between IRS1 and p110β with linoleic, arachidonic and adrenic acid. Incubation with palmitic acid decreased IRS1 expression. p85α was down-regulated after incubation with oleic and dosahexaenoic acid and up-regulated with palmitic acid. p110β expression was increased and decreased after incubation with oleic and palmitic acid, respectively. The ratio p85α/p110β was decreased by oleic and dosahexaenoic acid and increased by palmitic acid. Conclusions: Our in vitro results suggest a detrimental role of palmitic acid on the expression of gene related to insulin signaling pathway, with oleic acid being the one with the higher and more beneficial effects. DHA had a slight beneficial effect. Fatty acid-induced regulation of genes related to the IRS1/PI3K pathway may be a novel mechanism by which fatty acids regulate insulin sensitivity in visceral adipocytes.


1989 ◽  
Vol 120 (2) ◽  
pp. 175-179 ◽  
Author(s):  
C. Street ◽  
R. J. S. Howell ◽  
L. Perry ◽  
S. Al-Othman ◽  
T. Chard

Abstract. The effect of non-esterified fatty acids (NEFA) on the in vitro binding of testosterone, 5-alpha dihydrotestosterone and estradiol E2 to sex hormone binding globulin (SHBG) was examined using pooled normal female serum, and SHBG and albumin fractions obtained from the partial purification of late pregnancy serum. A range of saturated and unsaturated fatty acids were examined for their effect on steroid-protein binding. In normal female serum, NEFA added at physiological concentrations disrupted steroid-protein binding. The shorter chain (C8–C12) saturated acids and the poly-unsaturated acids proved to be more effective inhibitors than the longer chain saturated or mono-unsaturated acids. The greatest inhibition was obtained with E2 whereas the binding of dihydrotestosterone was least affected. With partially purified SHBG, the same concentrations of NEFA were less effective at inhibiting the binding of dihydrotestosterone and testosterone but elicited the same effect with E2. The binding of steroids to albumin appeared to be unaffected by these concentrations of NEFA.


2010 ◽  
Vol 22 (8) ◽  
pp. 1262 ◽  
Author(s):  
Xing Yang ◽  
Kylie R. Dunning ◽  
Linda L.-Y. Wu ◽  
Theresa E. Hickey ◽  
Robert J. Norman ◽  
...  

Lipid droplet proteins regulate the storage and utilisation of intracellular lipids. Evidence is emerging that oocyte lipid utilisation impacts embryo development, but lipid droplet proteins have not been studied in oocytes. The aim of the present study was to characterise the size and localisation of lipid droplets in mouse oocytes during the periovulatory period and to identify lipid droplet proteins as potential biomarkers of oocyte lipid content. Oocyte lipid droplets, visualised using a novel method of staining cumulus–oocyte complexes (COCs) with BODIPY 493/503, were small and diffuse in oocytes of preovulatory COCs, but larger and more centrally located after maturation in response to ovulatory human chorionic gonadotrophin (hCG) in vivo, or FSH + epidermal growth factor in vitro. Lipid droplet proteins Perilipin, Perilipin-2, cell death-inducing DNA fragmentation factor 45-like effector (CIDE)-A and CIDE-B were detected in the mouse ovary by immunohistochemistry, but only Perilipin-2 was associated with lipid droplets in the oocyte. In COCs, Perilipin-2 mRNA and protein increased in response to ovulatory hCG. IVM failed to induce Perilipin-2 mRNA, yet oocyte lipid content was increased in this context, indicating that Perilipin-2 is not necessarily reflective of relative oocyte lipid content. Thus, Perilipin-2 is a lipid droplet protein in oocytes and its induction in the COC concurrent with dynamic reorganisation of lipid droplets suggests marked changes in lipid utilisation during oocyte maturation.


2018 ◽  
Vol 30 (12) ◽  
pp. 1770 ◽  
Author(s):  
W. Chankeaw ◽  
Y. Z. Guo ◽  
R. Båge ◽  
A. Svensson ◽  
G. Andersson ◽  
...  

Elevated non-esterified fatty acids (NEFAs) are associated with negative effects on bovine theca, granulosa and oviductal cells but the effects of NEFAs on bovine endometrial epithelial cells (bEECs) are not as well documented. The objective of this study was to define the effects of NEFAs on bEECs. Postprimary bEECs were treated with 150, 300 or 500 µM of either palmitic acid (PA), stearic acid (SA) or oleic acid (OA) or a mixture of NEFAs (150 µM of each FA) or 0.5% final concentration of vehicle ethanol (control). Viability and proliferation of bEECs exposed to 150 µM of each NEFA or a mixture of NEFAs were unaffected. Increased lipid accumulation was found in all treated groups (P < 0.01). In cells exposed to 500 µM of each NEFA and 300 µM PA decreased cell viability (P < 0.001), proliferation (P < 0.05) and increased apoptosis (P < 0.05) were observed. Treatment with 500 µM OA, PA and SA had the strongest effects on cell viability, proliferation and apoptosis (P < 0.05). Treatment with PA and OA increased interleukin-6 (IL-6) concentrations (P < 0.05), whereas only the highest concentration of PA, OA and SA stimulated IL-8 production (P < 0.05). These results suggest that high concentrations of NEFAs may impair endometrial function with more or less pronounced effects depending on the type of NEFA and time of exposure.


1999 ◽  
Vol 81 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Amanda E. Jones ◽  
Michael Stolinski ◽  
Ruth D. Smith ◽  
Jane L. Murphy ◽  
Stephen A. Wootton

The gastrointestinal handling and metabolic disposal of [1-13C]palmitic acid, [1-13C]stearic acid and [1-13C]oleic acid administered within a lipid–casein–glucose–sucrose emulsion were examined in normal healthy women by determining both the amount and nature of the13C label in stool and label excreted on breath as13CO2. The greatest excretion of13C label in stool was in the stearic acid trial (9.2 % of administered dose) whilst comparatively little label was observed in stool in either the palmitic acid (1.2 % of administered dose) or oleic acid (1.9 % of administered dose) trials. In both the palmitic acid and oleic acid trials, all of the label in stool was identified as being present in the form in which it was administered (i.e. [13C]palmitic acid in the palmitic acid trial and [13C]oleic acid in the oleic acid trial). In contrast, only 87 % of the label in the stool in the stearic acid trial was identified as [13C]stearic acid, the remainder was identified as [13C]palmitic acid which may reflect chain shortening of [1-13C]stearic acid within the gastrointestinal tract. Small, but statistically significant, differences were observed in the time course of recovery of13C label on breath over the initial 9 h of the study period (oleic acid = palmitic acid > stearic acid). However, when calculated over the 24 h study period, the recovery of the label as13CO2was similar in all three trials (approximately 25 % of absorbed dose). These results support the view that chain length and degree of unsaturation may influence the gastrointestinal handling and immediate metabolic disposal of these fatty acids even when presented within an emulsion.


2015 ◽  
Vol 36 (3) ◽  
pp. 852-865 ◽  
Author(s):  
Wiebke Gehrmann ◽  
Wiebke Würdemann ◽  
Thomas Plötz ◽  
Anne Jörns ◽  
Sigurd Lenzen ◽  
...  

Background/Aims: Elevated levels of non-esterified fatty acids (NEFAs) are under suspicion to mediate β-cell dysfunction and β-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative stress mediates lipotoxicity and there is evidence that the subcellular site of ROS formation is the peroxisome. However, the interaction between unsaturated and saturated NEFAs in this process is unclear. Methods: Toxicity of rat insulin-producing cells after NEFA incubation was measured by MTT and caspase assays. NEFA induced H2O2 formation was quantified by organelle specific expression of the H2O2 specific fluorescence sensor protein HyPer. Results: The saturated NEFA palmitic acid had a significant toxic effect on the viability of rat insulin-producing cells. Unsaturated NEFAs with carbon chain lengths >14 showed, irrespective of the number of double bonds, a pronounced protection against palmitic acid induced toxicity. Palmitic acid induced H2O2 formation in the peroxisomes of insulin-producing cells. Oleic acid incubation led to lipid droplet formation, but in contrast to palmitic acid induced neither an ER stress response nor peroxisomal H2O2 generation. Furthermore, oleic acid prevented palmitic acid induced H2O2 production in the peroxisomes. Conclusion: Thus unsaturated NEFAs prevent deleterious hydrogen peroxide generation during peroxisomal β-oxidation of long-chain saturated NEFAs in rat insulin-producing cells.


Sign in / Sign up

Export Citation Format

Share Document