scholarly journals The composition of organic phosphorus in soils of the Snowy Mountains region of south-eastern Australia

Soil Research ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 10 ◽  
Author(s):  
Ashlea L. Doolette ◽  
Ronald J. Smernik ◽  
Timothy I. McLaren

Few studies have considered the influence of climate on organic phosphorus (P) speciation in soils. We used sodium hydroxide–ethylenediaminetetra-acetic acid (NaOH–EDTA) soil extractions and solution 31P nuclear magnetic resonance spectroscopy to investigate the soil P composition of five alpine and sub-alpine soils. The aim was to compare the P speciation of this set of soils with those of soils typically reported in the literature from other cold and wet locations, as well as those of other Australian soils from warmer and drier environments. For all alpine and sub-alpine soils, the majority of P detected was in an organic form (54–66% of total NaOH–EDTA extractable P). Phosphomonoesters comprised the largest pool of extractable organic P (83–100%) with prominent peaks assigned to myo- and scyllo-inositol hexakisphosphate (IP6), although trace amounts of the neo- and d-chiro-IP6 stereoisomers were also present. Phosphonates were identified in the soils from the coldest and wettest locations; α- and β-glycerophosphate and mononucleotides were minor components of organic P in all soils. The composition of organic P in these soils contrasts with that reported previously for Australian soils from warm, dry environments where inositol phosphate (IP6) peaks were less dominant or absent and humic-P and α- and β-glycerophosphate were proportionally larger components of organic P. Instead, the soil organic P composition exhibited similarities to soils from other cold, wet environments. This provides preliminary evidence that climate is a key driver in the variation of organic P speciation in soils.

Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 152 ◽  
Author(s):  
A. L. Doolette ◽  
R. J. Smernik ◽  
W. J. Dougherty

Solution 31P nuclear magnetic resonance (NMR) spectroscopy is the most common technique for the detailed characterisation of soil organic P, but is yet to be applied widely to Australian soils. We investigated the composition of soil P in 18 diverse Australian soils using this technique. Soils were treated with a mixture of sodium hydroxide–ethylenediaminetetra-acetic acid (NaOH-EDTA), which resulted in the extraction of up to 89% of total soil P. It was possible to identify up to 15 well-resolved resonances and one broad signal in each 31P NMR spectrum. The well-resolved resonances included those of orthophosphate, α- and β-glycerophosphate, phytate, adenosine-5′-monosphosphate, and scyllo-inositol phosphate, as well as five unassigned resonances in the monoester region and two unassigned resonances downfield (higher ppm values) of orthophosphate. The majority of 31P NMR signal in the NaOH-EDTA extracts was assigned to orthophosphate, representing 37–90% of extractable P. Orthophosphate monoesters comprised the next largest pool of extractable P (7–55%). The most prominent resonances were due to phytate, which comprised up to 9% of total NaOH-EDTA extractable P, and α- and β-glycerophosphate, which comprised 1–5% of total NaOH-EDTA extractable P. A substantially greater portion of organic P (2–39% of total NaOH-EDTA extractable P) appeared as a broad peak in the monoester P region; we propose that this is due to P found in large, ‘humic’ molecules. Orthophosphate diesters (1–5% of total NaOH-EDTA extractable P) and pyrophosphate (1–5% of total NaOH-EDTA extractable P) were minor components of P in all soil extracts. These results suggest that organic P in large humic molecules represents the second most abundant form of NaOH-EDTA extractable soil P (behind orthophosphate). Furthermore, small P-containing compounds, such as phytate, represent a much smaller proportion of soil P than is commonly assumed.


Soil Research ◽  
2007 ◽  
Vol 45 (5) ◽  
pp. 397 ◽  
Author(s):  
David Nash ◽  
Murray Hannah ◽  
Kirsten Barlow ◽  
Fiona Robertson ◽  
Nicole Mathers ◽  
...  

Phosphorus (P) exports from agricultural land are a problem world-wide and soil tests are often used to identify high risk areas. A recent study investigated changes in soil (0–20 mm), soil water and overland flow in 4 recently laser-graded (<1 year) and 4 established (laser-graded >10 years) irrigated pastures in south-eastern Australia before and after 3 years of irrigated dairy production. We use the results from that study to briefly examine the relationships between a series of ‘agronomic’ (Olsen P, Colwell P), environmental (water-extractable P, calcium chloride extractable P, P sorption saturation, and P sorption), and other (total P, organic P) soil P tests. Of the 2 ‘agronomic’ soil P tests, Colwell P explained 91% of the variation in Olsen P, and Colwell P was better correlated with the other soil tests. With the exception of P sorption, all soil P tests explained 57% or more of the total variation in Colwell P, while they explained 61% or less of Olsen P possibly due to the importance of organic P in this soil. Variations in total P were best explained by the organic P (85%), Calcium chloride extractable P (83%), water-extractable P (78%), and P sorption saturation (76%). None of the tests adequately predicted the variation in P sorption at 5 mg P/L equilibrating solution concentration. The results of this limited study highlight the variability between soil P tests that may be used to estimate P loss potential. Moreover, these results suggest that empirical relationships between specific soil P tests and P export potential will have limited resolution where different soil tests are used, as the errors in the relationship between soil test P and P loss potential are compounded by between test variation. We conclude that broader study is needed to determine the relationships between soil P tests for Australian soils, and based on that study a standard protocol for assessing the potential for P loss should be developed.


Soil Research ◽  
1988 ◽  
Vol 26 (2) ◽  
pp. 343 ◽  
Author(s):  
MJ Mclaughlin ◽  
AM Alston ◽  
JK Martin

The incorporation of 32P and 33P from 33P-labelled fertilizer and 33P-labelled pasture residues into organic and inorganic fractions of soil P was studied in a solonized brown soil (Calcixerollic xerochrept) cropped to wheat (Triticum aestivum). Most of the plant residue 33P was present as inorganic P at the time it was added to the soil, but only 7 days later almost 40% had been incorporated into organic P fractions of the soil. As the fertilizer was banded near the soil surface at sowing, little of the 32P from the 32P-labelled fertilizer was incorporated into organic forms, even after 95 days. From a knowledge of the P uptake by the plants and microorganisms, an integrated P cycle for this soil under wheat-pasture rotations was developed. We propose that fertilization of the pasture phase of the rotation stimulates the build-up of residual inorganic and organic P, while fertilization of the wheat phase predominantly stimulates the accumulation of inorganic forms of P in the soil.


Soil Research ◽  
2016 ◽  
Vol 54 (1) ◽  
pp. 11 ◽  
Author(s):  
Melinda R. S. Moata ◽  
Ashlea L. Doolette ◽  
Ronald J. Smernik ◽  
Ann M. McNeill ◽  
Lynne M. Macdonald

Organic phosphorus (P) plays an important role in the soil P cycle. It is present in various chemical forms, the relative amounts of which vary among soils, due to factors including climate, land use, and soil type. Few studies have investigated co-variation between P types or stoichiometric correlation with the key elemental components of organic matter– carbon (C) and nitrogen (N), both of which may influence P pool structure and dynamics in agricultural soils. In this study we determined the organic P speciation of twenty Australian Red Chromosols soils, a soil type widely used for cropping in Australia. Eight different chemical forms of P were quantified by 31P NMR spectroscopy, with a large majority (>90%) in all soils identified as orthophosphate and humic P. The strongest correlations (r2 = 0.77–0.85, P < 0.001) between P types were found among minor components: (i) between two inositol hexakisphosphate isomers (myo and scyllo) and (ii) between phospholipids and RNA (both detected as their alkaline hydrolysis products). Total soil C and N were correlated with phospholipid and RNA P, but not the most abundant P forms of orthophosphate and humic P. This suggests an influence of organic matter content on the organic P pool consisting of phospholipid and RNA, but not on inositol P or the largest organic P pool in these soils – humic P.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1001
Author(s):  
Scott X. Chang ◽  
Mihiri C.W. Manimel Wadu ◽  
Fengxiang Ma

Shelterbelt systems play pivotal roles in providing goods and services to the rural community and the society at large, but phosphorus (P) cycling in shelterbelt systems is poorly studied, while P cycling and availability would be linked to the ecological function and services of shelterbelt systems. This study was conducted to understand how long-term (>30 years) land-use between cropland and forestland in shelterbelt systems affect soil P status. We investigated modified Kelowna (PKelowna) and Mehlich-3 (PMehlich) extractable P, P fractions (by sequential chemical fractionation), P sorption properties in the 0–10 and 10–30 cm soils and their relationship in six pairs of the cropland areas and adjacent forestland (each pair constitutes a shelterbelt system) in central Alberta. Both PKelowna and PMehlich in the 0–10 cm soil were greater in the cropland than in the forestland. The PKelowna ranged from 10 to 170 and 2 to 57 mg kg−1 within the cropland areas and forestland, respectively. The inorganic P fraction in the 0–30 cm depth was significantly related to PKelowna (R2 = 0.55) and PMehlich (R2 = 0.80) in cropland, but organic P fraction was not significantly related with neither PKelowna nor PMehlich. The iron (Fe) and aluminum (Al) associated P (Fe/Al-P) explained ~50% and ~45% of the variation of PKelowna in the 0–30 cm soil in the cropland and forestland, respectively. The Fe/Al-P and organic P fractions in the 0–10 cm soil were greater in the cropland than in the forestland. The differences in availability and P forms depending on the land use type in shelterbelts suggest that P management needs to be land-use type-specific for shelterbelt systems.


1995 ◽  
Vol 75 (3) ◽  
pp. 311-318 ◽  
Author(s):  
John E. Richards ◽  
Thomas E. Bates ◽  
S. C. Sheppard

Long-term fertilizer-P application affects soil-P distribution and forms. These effects must be characterized to use fertilizer P most efficiently. In three southern Ontario soils of varying texture, we determined changes in soil organic P (Po) and inorganic P (Pi) caused by fertilizer P application (0–90 kg broadcast P ha−1 yr−1 during 10 yr of corn production. Soil P was characterized by (1) annual measurement of 0.5 M NaHCO3-extractable P (Olsen-P) and (2) sequential extraction from soil taken at the beginning of the experiment and after receiving 0 to 90 kg broadcast P ha−1 yr−1 for 10 yr. Fertilizer P increased Olsen-P concentrations in all soils. The increases were proportional to the cumulative amount of P applied. Based on all three soils, 16 kg P ha−1 was required to increase Olsen-P concentrations by 1 mg L−1 soil. After 10 yr of 90 kg broadcast P ha−1 yr−1, labile Pi fractions (resin P and NaHCO3 P) were increased, as was NaOH-extractable Pi in all soils. On the most P-deficient soil (Conestogo SiL), where corn grain yields were increased by fertilizer P, P fertilization also increased HCl-Pi, residual P (H2O2-H2SO4 extractable P) and labile Po (NaHCO3-Po and NaOH-Po). A P balance was calculated, which accounted for additions to, removals from, and changes in the total P status of the 0–20 cm layer. When no broadcast P was applied, there was an unaccounted-for input (possibly from the subsoil), of 20.9 kg P ha−1 yr−1 on the Conestogo SiL. When 90 kg broadcast P ha−1 yr−1 was applied to the Fox SL, the coarsest soil studied, there was a deficit of 30.9 kg P ha−1 yr−1 and elevated Olsen-P concentrations in the 25–36 cm depth, suggesting downward movement on fertilizer P. It appears that subsoil P was involved in the P cycle of these two soils. Key words: Continuous corn, P fertilization, sequential extraction, organic phosphorus, inorganic phosphorus, labile phosphorus, subsoil P, leaching


1997 ◽  
Vol 77 (4) ◽  
pp. 685-691 ◽  
Author(s):  
T. Q. Zhang ◽  
A. F. MacKenzie

Phosphorus from fertilized agricultural land may contribute to ground or surface water inputs and accelerate eutrophication. With increases in soil P saturation and organic P in long-term fertilized soils, soil P leaching losses may increase. The effect of long-term P fertilization (6 to 11 yr) on inorganic and organic P in soil solutions at zero tension was studied on two soils, a Chicot sandy clay loam (Grey Brown Luvisol) and a Ste. Rosalie clay (Humic Gleysol). Soil solution samples were collected using a cylinder technique and analyzed for total dissolved P (TDP), dissolved inorganic P (DIP), and dissolved organic P (DOP). Levels for DIP ranged from 0.15 to 1.01 mg P L−1 and TDP ranged from 0.33 to 1.19 mg P L−1 in the Chicot soil. In the Ste. Rosalie soil, values of DIP ranged from 0.04 to 0.23 mg P L−1 and TDP ranged from 0.15 to 0.36 mg P L−1. Increasing fertilizer P applications from 44 kg ha−1 to 132 kg ha−1 increased DIP and TDP in soil solutions in both soils. There was no effect of P fertilization rate on DOP values. Soil P movement below 45 cm during the non-growing season was estimated at 633 to 2732 g ha−1 yr−1 in the Chicot soil and from 312 to 974 g ha−1 yr−1 in the Ste. Rosalie soil. Soil solution DIP was found to be linearly related to soil P extractable with 0.5 M NaHCO3, but levels of NaHCO3-extractable P required to produce 0.05 mg P L−1 DIP varied with soil, ranging from 70 to 110 mg P kg−1 soil. The critical level of extractable P has to be considered in association with soil type to predict potential water contamination. Key words: Continuous corn, long-term fertilization, soil solution, dissolved inorganic and organic P, NaHCO3 extractable P


1985 ◽  
Vol 65 (3) ◽  
pp. 475-487 ◽  
Author(s):  
I. P. O’HALLORAN ◽  
R. G. KACHANOSKI ◽  
J. W. B. STEWART

The spatial variability of soil phosphorus (0–15 cm) and its relationship to management and texture was examined on an ongoing (since 1967) crop rotation study located on a Brown Chernozemic loam soil at Swift Current, Saskatchewan. Total soil P was less variable than either the total inorganic (Pi) or organic (Po) phosphorus fractions. The same was found for the sodium bicarbonate extractable P (bicarb-P) fractions, although they were more variable. The spatial variability of the measured P fractions indicated that the site was not uniformly variable. Texture varied significantly within and between treatments and replicates with sand being the most variable. Up to 90% of the variability in P could be accounted for by changes in texture. Considering this, sampling intensity could be significantly reduced in a study of temporal changes in soil P on the experimental site. Organic P (both total and bicarb-Po) and bicarb-Pi were negatively correlated to sand content. The influence of managment on soil phosphorus varied with texture. Removal of treatment effects over the textural ranges encountered and the non-uniform variability of the various soil parameters measured in this study demonstrated the importance of obtaining a complete knowledge of the spatial variability of the experimental site. Key words: Inorganic P, organic P, soil variability, bicarbonate extractable P, soil uniformity


2019 ◽  
Vol 99 (2) ◽  
pp. 161-172 ◽  
Author(s):  
Dalel Abdi ◽  
Barbara J. Cade-Menun ◽  
Noura Ziadi ◽  
Yichao Shi ◽  
Gilles Bélanger ◽  
...  

Phosphorus (P) fertilization can increase grassland production, but will also alter P forms, changing their cycling and potential for loss in runoff. We assessed the effects of mineral P fertilization on soil P forms in timothy swards at two sites in Quebec, Canada. Soil samples (10 cm depth) were collected in autumn 2013 from replicate plots at Lévis on a Kamouraska clay and at Normandin on a Labarre clay loam, each having received three rates of triple superphosphate (0, 20, and 40 kg P ha−1) for 4 yr. These were analyzed for pH, total carbon (TC), total nitrogen (TN), and total phosphorus (TP); Mehlich-3-extractable aluminium (AlM3), iron (FeM3), calcium (CaM3), and P (PM3); and31P nuclear magnetic resonance spectroscopy (31P-NMR) following sodium hydroxide–ethylenediaminetetraacetic acid (NaOH–EDTA) extraction. Phosphorus fertilization had no significant effects on soil TC, TN, AlM3, FeM3, CaM3, and pH, but significantly increased TP, NaOH–EDTA-extractable total P and total inorganic P, PM3, orthophosphate, and glucose 6-phosphate at both sites. In contrast, NaOH–EDTA-extractable total organic P, total orthophosphate diesters, and scyllo-inositol hexaphosphate decreased with P fertilization. Phosphorus fertilization over 4 yr increased soluble inorganic P and decreased organic P at both grassland sites.


2022 ◽  
Vol 9 ◽  
Author(s):  
Wei Yu ◽  
Haiquan Yang ◽  
Jingan Chen ◽  
Peng Liao ◽  
Quan Chen ◽  
...  

Macrophyte-dominated eutrophication (MDE) lakes have attracted wide attention due to the high phosphorus (P) loading in sediments that poses a wide spread risk for P release and pollution management. However, because of the superior productivity characteristics, the role of organic P mineralization in sediments in the internal P loading of MDE lake is still under debate. This study investigated the release dynamic of P in the sediments of Lake Caohai, a MDE lake in southwest of China, using a combination of the modified Huffer sequential extraction method, 31P nuclear magnetic resonance spectroscopy (NMR), and composite diffusive gradient in thin films (DGT) technology. Results showed that the apparent P diffusion flux at the sediment-water interface was remarkably high, with a mean value of 0.37 mg m−2 d−1. The phosphate ester organophosphorus components (i.e., Mono-P and Diester-P) continuously deposited and degraded in the sediments maintained the high productivity of the lake, and the mineralization process plays a critical role in the release of internal P. Although the content of inorganic P in sediment is relatively high (accounting for approximately 60% of total P), the reductive mechanism based on P-containing iron oxide/hydroxide has a low contribution to the internal P loading, as was indicated by the low release rate of P-combination iron-manganese (Fe-Mn)/iron-aluminum (Fe-Al) (BD-P and NaOH-P) and the insignificant positive correlations between DGT-labile P and DGT-labile Fe in the sediment cores. Additionally, organic P in sediments could transfer to P-combination Fe-Al/Fe-Mn. However, in severely expropriated environments, the enrichment of P-combination Fe-Al/Fe-Mn in surface sediments inhibited the mineralization of monophosphate to some degree. Taken together, this study emphasized the impact of sediment organic P loading on the release of internal P in lake, highlighting that organic P is also the valuable objects for avoiding eutrophication of MDE lakes.


Sign in / Sign up

Export Citation Format

Share Document