scholarly journals An ancestral bacterial division system is widespread in eukaryotic mitochondria

2015 ◽  
Vol 112 (33) ◽  
pp. 10239-10246 ◽  
Author(s):  
Michelle M. Leger ◽  
Markéta Petrů ◽  
Vojtěch Žárský ◽  
Laura Eme ◽  
Čestmír Vlček ◽  
...  

Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such asSaccharomyces cerevisiae, mammals, andArabidopsis thalianaseem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoanDictyostelium purpureumand the jakobidAndalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression inSaccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.

2010 ◽  
Vol 107 (5) ◽  
pp. 2043-2047 ◽  
Author(s):  
Zheng Eelderink-Chen ◽  
Gabriella Mazzotta ◽  
Marcel Sturre ◽  
Jasper Bosman ◽  
Till Roenneberg ◽  
...  

Circadian timing is a fundamental biological process, underlying cellular physiology in animals, plants, fungi, and cyanobacteria. Circadian clocks organize gene expression, metabolism, and behavior such that they occur at specific times of day. The biological clocks that orchestrate these daily changes confer a survival advantage and dominate daily behavior, for example, waking us in the morning and helping us to sleep at night. The molecular mechanism of circadian clocks has been sketched out in genetic model systems from prokaryotes to humans, revealing a combination of transcriptional and posttranscriptional pathways, but the clock mechanism is far from solved. Although Saccharomyces cerevisiae is among the most powerful genetic experimental systems and, as such, could greatly contribute to our understanding of cellular timing, it still remains absent from the repertoire of circadian model organisms. Here, we use continuous cultures of yeast, establishing conditions that reveal characteristic clock properties similar to those described in other species. Our results show that metabolism in yeast shows systematic circadian entrainment, responding to cycle length and zeitgeber (stimulus) strength, and a (heavily damped) free running rhythm. Furthermore, the clock is obvious in a standard, haploid, auxotrophic strain, opening the door for rapid progress into cellular clock mechanisms.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1569-1579 ◽  
Author(s):  
Michael L Rolfsmeier ◽  
Michael J Dixon ◽  
Luis Pessoa-Brandão ◽  
Richard Pelletier ◽  
Juan José Miret ◽  
...  

Abstract Trinucleotide repeat (TNR) instability in humans is governed by unique cis-elements. One element is a threshold, or minimal repeat length, conferring frequent mutations. Since thresholds have not been directly demonstrated in model systems, their molecular nature remains uncertain. Another element is sequence specificity. Unstable TNR sequences are almost always CNG, whose hairpin-forming ability is thought to promote instability by inhibiting DNA repair. To understand these cis-elements further, TNR expansions and contractions were monitored by yeast genetic assays. A threshold of ∼15–17 repeats was observed for CTG expansions and contractions, indicating that thresholds function in organisms besides humans. Mutants lacking the flap endonuclease Rad27p showed little change in the expansion threshold, suggesting that this element is not altered by the presence or absence of flap processing. CNG or GNC sequences yielded frequent mutations, whereas A-T rich sequences were substantially more stable. This sequence analysis further supports a hairpin-mediated mechanism of TNR instability. Expansions and contractions occurred at comparable rates for CTG tract lengths between 15 and 25 repeats, indicating that expansions can comprise a significant fraction of mutations in yeast. These results indicate that several unique cis-elements of human TNR instability are functional in yeast.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1258
Author(s):  
Hirokazu Sakamoto ◽  
Kumiko Nakada-Tsukui ◽  
Sébastien Besteiro

Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs and the diversity of their functions in various lineages is an important challenge for understanding the evolutionary background of autophagy.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Ayla Sessions ◽  
Gaurav Kaushik ◽  
Adam Engler

Aging is associated with extensive remodeling of the heart, including basement membrane extracellular matrix (ECM) components that surround cardiomyocytes. Remodeling is thought to contribute to impaired cardiac mechanotransduction, but the contribution of specific basement membrane ECM components to age-related cardiac remodeling is unclear, owing to current model systems being complex and slow to age. To investigate the effect of basement membrane remodeling on mechanical function in genetically tractable, rapidly aging, and simple model organisms, we employed Drosophila melanogaster, which has a simple trilayered heart tube composed of only basement membrane ECM. We observed differential regulation of collagens between laboratory Drosophila strains , i.e. yellow-white ( yw ) and white-1118 ( w 1118 ), leading to changes in muscle physiology, which were linked to severity of dysfunction with age. Therefore, we sought to understand the extent to which basement membrane ECM modulates lateral cardiomyocyte coupling and contractile function during aging. Cardiac-restricted knockdown of ECM genes Pericardin , Laminin A , and Viking in Drosophila prevented age-associated heart tube restriction and increased contractility, even under viscous load. Most notably, reduction of Laminin A expression decreased levels of other genes that co-assemble in ECM, leading to overall preservation of contractile velocity and extension of median organismal lifespan by 3 weeks or 39%. These data provide new evidence of a direct link between basement membrane ECM homeostasis, contractility, and maintenance of lifespan.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Ayla O Sessions

Increased deposition of extracellular matrix (ECM) is observed in all advanced age heart failure patients, but current model systems are complex and slow to age. To investigate the effect of extracellular remodeling on mechanical function in genetically tractable, rapidly aging, and simple model organisms, we employed Drosophila melanogaster, which has a simple trilayered heart tube. We found that two common wildtype strains of Drosophila, i.e. yellow-white (yw) and white-1118 (w1118), exhibit different cytoskeletal and ECM remodeling with age. Using a recently developed nanoindentation method to measure cardiomyocyte stiffness and high speed optical imaging to assess contractility of intact Drosophila hearts, we found that yw flies had stiffer intercalated discs (ICD) and exhibited diastolic dysfunction with age. On the other hand, w1118 flies had a shorter lifespan compared to yw, did not exhibit ICD stiffening, had a less severe diastolic dysfunction, and showed an increase in ECM layer thickness between ventral muscle (VM) and cardiomyocyte (CM) layers of the heart tube. To modulate ECM and assess its effect in the aged w1118 flies, we knocked-down ECM genes LamininA and Viking (homologous to Collagen IV). Both ECM KD genotypes exhibited diastolic dilation with increased fractional shortening at adult (1wk) and aged (5wk) time points. The LamininA KD resulted in decreased cardiomyocyte stiffness correlating with increased relaxation velocities in adult flies and preservation of shortening and relaxation velocities in aged flies over controls. However, both the LamininA and Collagen IV KD flies experienced a basal increase in the decoupling of their cardiomyocytes as determined by heart period variance and % fibrillar heart-beats. These conductance issues were not enough to counteract the increased cardiac output and performance with age, and the Collagen IV KD outlived controls by 1.5 weeks median survival and the LamininA KD by 3 weeks. This suggests that the cell-ECM contacts in the basement membrane are intimately tied not only to the coupling of the cardiomyocytes of the Drosophila heart tube but also to cytoskeletal remodeling, but perhaps different ECM proteins have different mechanisms for interacting with the cardiomyocyte cytoskeleton.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongcan Chen ◽  
Jun Liang ◽  
Zhicong Chen ◽  
Bo Wang ◽  
Tong Si

Heavy metal contamination is an environmental issue on a global scale. Particularly, cadmium poses substantial threats to crop and human health. Saccharomyces cerevisiae is one of the model organisms to study cadmium toxicity and was recently engineered as a cadmium hyperaccumulator. Therefore, it is desirable to overcome the cadmium sensitivity of S. cerevisiae via genetic engineering for bioremediation applications. Here we performed genome-scale overexpression screening for gene targets conferring cadmium resistance in CEN.PK2-1c, an industrial S. cerevisiae strain. Seven targets were identified, including CAD1 and CUP1 that are known to improve cadmium tolerance, as well as CRS5, NRG1, PPH21, BMH1, and QCR6 that are less studied. In the wild-type strain, cadmium exposure activated gene transcription of CAD1, CRS5, CUP1, and NRG1 and repressed PPH21, as revealed by real-time quantitative PCR analyses. Furthermore, yeast strains that contained two overexpression mutations out of the seven gene targets were constructed. Synergistic improvement in cadmium tolerance was observed with episomal co-expression of CRS5 and CUP1. In the presence of 200 μM cadmium, the most resistant strain overexpressing both CAD1 and NRG1 exhibited a 3.6-fold improvement in biomass accumulation relative to wild type. This work provided a new approach to discover and optimize genetic engineering targets for increasing cadmium resistance in yeast.


2020 ◽  
Author(s):  
Stefano Mammola ◽  
Enrico Lunghi ◽  
Helena Bilandžija ◽  
Pedro Cardoso ◽  
Volker Grimm ◽  
...  

(1) Caves and other subterranean habitats fulfill the requirements of experimental model systems to address general questions in ecology and evolution. Yet, the harsh working conditions of these environments and the uniqueness of the subterranean organisms have challenged most attempts to pursuit standardized research(2) Two main obstacles have synergistically hampered previous attempts. First, there is a habitat impediment related to the objective difficulties of exploring subterranean habitats and our inability to access the network of fissures that represent the elective habitat for the so-called “cave species.” Second, there is a biological impediment illustrated by the rarity of most subterranean species and their low physiological tolerance, often limiting sample size and complicating lab experiments.(3) We explore the advantages and disadvantages of four general experimental setups (in-situ, quasi in-situ, ex-situ, and in-silico) in the light of habitat and biological impediments. We also discuss the potential of indirect approaches to research. Furthermore, using bibliometric data, we provide a quantitative overview of the model organisms that scientists have exploited in the study of subterranean life.(4) Our over-arching goal is to promote caves as model systems where one can perform standardised scientific research. This is important not only to achieve an in-depth understanding of the functioning of subterranean ecosystems but also to fully exploit their long-discussed potential in addressing general scientific questions with implications beyond the boundaries of this discipline.


Author(s):  
Krisztina Takács-Vellai ◽  
Zsolt Farkas ◽  
Fanni Ősz ◽  
Gordon W. Stewart

AbstractPheochromocytoma (PHEO) and paraganglioma (PGL) (together PPGL) are tumors with poor outcomes that arise from neuroendocrine cells in the adrenal gland, and sympathetic and parasympathetic ganglia outside the adrenal gland, respectively. Many follow germline mutations in genes coding for subunits of succinate dehydrogenase (SDH), a tetrameric enzyme in the tricarboxylic acid (TCA) cycle that both converts succinate to fumarate and participates in electron transport. Germline SDH subunit B (SDHB) mutations have a high metastatic potential. Herein, we review the spectrum of model organisms that have contributed hugely to our understanding of SDH dysfunction. In Saccharomyces cerevisiae (yeast), succinate accumulation inhibits alpha-ketoglutarate-dependent dioxygenase enzymes leading to DNA demethylation. In the worm Caenorhabditis elegans, mutated SDH creates developmental abnormalities, metabolic rewiring, an energy deficit and oxygen hypersensitivity (the latter is also found in Drosophila melanogaster). In the zebrafish Danio rerio, sdhb mutants display a shorter lifespan with defective energy metabolism. Recently, SDHB-deficient pheochromocytoma has been cultivated in xenografts and has generated cell lines, which can be traced back to a heterozygous SDHB-deficient rat. We propose that a combination of such models can be efficiently and effectively used in both pathophysiological studies and drug-screening projects in order to find novel strategies in PPGL treatment.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8251 ◽  
Author(s):  
Zhanjun Wang ◽  
Beibei Xu ◽  
Bao Li ◽  
Qingqing Zhou ◽  
Guiyi Wang ◽  
...  

Euphorbiaceae plants are important as suppliers of biodiesel. In the current study, the codon usage patterns and sources of variance in chloroplast genome sequences of six different Euphorbiaceae plant species have been systematically analyzed. Our results revealed that the chloroplast genomes of six Euphorbiaceae plant species were biased towards A/T bases and A/T-ending codons, followed by detection of 17 identical high-frequency codons including GCT, TGT, GAT, GAA, TTT, GGA, CAT, AAA, TTA, AAT, CCT, CAA, AGA, TCT, ACT, TAT and TAA. It was found that mutation pressure was a minor factor affecting the variation of codon usage, however, natural selection played a significant role. Comparative analysis of codon usage frequencies of six Euphorbiaceae plant species with four model organisms reflected that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae should be considered as suitable exogenous expression receptor systems for chloroplast genes of six Euphorbiaceae plant species. Furthermore, it is optimal to choose Saccharomyces cerevisiae as the exogenous expression receptor. The outcome of the present study might provide important reference information for further understanding the codon usage patterns of chloroplast genomes in other plant species.


1984 ◽  
Vol 4 (1) ◽  
pp. 23-29
Author(s):  
A G Papageorge ◽  
D Defeo-Jones ◽  
P Robinson ◽  
G Temeles ◽  
E M Scolnick

A family of normal vertebrate genes and oncogenes has been called the ras gene family. The name ras was assigned to this gene family based on the species of origin of the viral oncogenes of the rat-derived Harvey and Kirsten murine sarcoma viruses. There are now three known functional members of the ras gene family, and genes homologous to ras genes have been detected in the DNA of a wide variety of mammals and in Drosophila melanogaster. Prior experiments have detected proteins coded for by ras genes in a large number of normal cells, cell lines, and tumors. We report here the detection of ras-related proteins in D. melanogaster, a result predicted by the earlier detection of ras-related genes in the Drosophila genome. We also report for the first time the detection of ras-related proteins in a single-cell eucaryocyte, Saccharomyces cerevisiae. These proteins, approximately 30K in size, are recognized by both a monoclonal antibody which binds to the p21 coded for by mammalian ras genes and a polyclonal rat serum made by transplanting a v-Ha-ras-induced tumor in Osborne-Mendel rats. The p21 of v-Ha-ras and the 30K proteins from S. cerevisiae share methionine-labeled peptides as detected by two-dimensional tryptic peptide maps. The results indicate that S. cerevisiae synthesizes ras-related proteins. A genetic analysis of the function of these proteins for yeast cells may now be possible.


Sign in / Sign up

Export Citation Format

Share Document