scholarly journals Epipolymorphisms associated with the clinical outcome of autoimmune arthritis affect CD4+T cell activation pathways

2016 ◽  
Vol 113 (48) ◽  
pp. 13845-13850 ◽  
Author(s):  
Roberto Spreafico ◽  
Maura Rossetti ◽  
John W. Whitaker ◽  
Wei Wang ◽  
Daniel J. Lovell ◽  
...  

Multifactorial diseases, including autoimmune juvenile idiopathic arthritis (JIA), result from a complex interplay between genetics and environment. Epigenetic mechanisms are believed to integrate such gene–environment interactions, fine-tuning gene expression, and possibly contributing to immune system dysregulation. Although anti-TNF therapy has strongly increased JIA remission rates, it is not curative and up to 80% of patients flare upon treatment withdrawal. Thus, a crucial unmet medical and scientific need is to understand the immunological mechanisms associated with remission or flare to inform clinical decisions. Here, we explored the CD4+T-cell DNA methylome of 68 poly-articular and extended oligo-articular JIA patients, before and after anti-TNF therapy withdrawal, to identify features associated with maintenance of inactive disease. Individual CpG sites were clustered in coherent modules without a priori knowledge of their function through network analysis. The methylation level of several CpG modules, specifically those enriched in CpG sites belonging to genes that mediate T-cell activation, uniquely correlated with clinical activity. Differences in DNA methylation were already detectable at the time of therapy discontinuation, suggesting epigenetic predisposition. RNA profiling also detected differences in T-cell activation markers (including HLA-DR) but, overall, its sensitivity was lower than epigenetic profiling. Changes to the T-cell activation signature at the protein level were detectable by flow cytometry, confirming the biological relevance of the observed alterations in methylation. Our work proposes epigenetic discrimination between clinical activity states, and reveals T-cell–related biological functions tied to, and possibly predicting or causing, clinical outcome.

2019 ◽  
Vol Volume 12 ◽  
pp. 2513-2518 ◽  
Author(s):  
Kazushige Yoshida ◽  
Masanori Okamoto ◽  
Jun Sasaki ◽  
Chika Kuroda ◽  
Haruka Ishida ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A423-A423
Author(s):  
Steven O’Day ◽  
Anthony El khoueiry ◽  
Chethan Ramamurthy ◽  
Andrea Bullock ◽  
Irina Shapiro ◽  
...  

BackgroundImmune checkpoint therapies targeting CTLA-4, alone, or in combination with anti-PD-1 have shown durable responses in cancer patients. However, responses are limited to a small subset of patients in the most common immunogenic cancers. Here we describe, a novel anti-CTLA-4 antibody, AGEN1181, with enhanced FcyR-dependent functionality that harnesses a novel mechanism of action to promote superior T cell activation and anti-cancer immunity. Concordant with preclinical findings, we report preliminary safety, pharmacodynamic and efficacy data from a phase 1 study of AGEN1181 (NCT03860272), alone or in combination with balstilimab (anti-PD-1 antibody) in a range of immunogenic and non-immunogenic tumors.MethodsThe functional activity of AGEN1181 or AGEN1181-like mouse surrogate were assessed in primary cell-based assays or in PD-1 refractory syngeneic tumor-bearing mouse models (B16F10 or KPC pancreatic tumor). Efficacy was evaluated as monotherapy, or in combination with anti-PD-1, focal radiation or chemotherapy. In an ongoing phase I study, AGEN1181 is administered intravenously once every 3- or 6-weeks as monotherapy (0.1–4 mg/kg), or every 6-weeks (1–4 mg/kg) in combination with balstilimab (3 mg/kg) dosed every 2 weeks. Dose-limiting toxicities were evaluated in the first 28 days of treatment. Neoantigen burden was assessed from pre-treatment tumor biopsy, as available, by next-generation sequencing. Fcγ receptor genotyping was assessed by real-time PCR. Immunophenotyping of peripheral blood mononuclear cells collected pre- and post-treatment were analyzed by flow cytometry.ResultsPreclinically, AGEN1181 demonstrated superior T cell activation than a standard IgG1 anti-CTLA-4 analogue in donors expressing either the low or high affinity FcγRIIIA. In poorly immunogenic tumor-bearing mouse models, AGEN1181-like surrogate demonstrated robust tumor control in combination with anti-PD-1 and focal radiation or chemotherapy. As of August 25th, 2020, we observed a clinical benefit rate of 63–53% at 6 and 12 weeks respectively among evaluable treated patients. We observed two durable responses in patients with endometrial cancer that were BRCA-, microsatellite stable and PD-L1 negative. These patients progressed on prior PD-1 therapy or chemoradiation respectively. Notably, responders expressed either the low or high affinity FcγRIIIA. AGEN1181 showed potent dose-dependent increases in peripheral CD4+Ki67+, CD4+ICOS+ and CD4+HLA-DR+ T-cells. Treatment was well tolerated through the highest dose tested. Grade 3 or greater immune-related adverse events occurred in 28.5% patients and were consistent with CTLA-4 therapies.ConclusionsAGEN1181 is designed to expand the benefit of anti-CTLA-4 therapy to a broader patient population. AGEN1181, alone or in combination with balstilimab, demonstrates clinical activity in heavily pretreated patients.Trial RegistrationNCT03860272


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A431-A431
Author(s):  
Michael Yellin ◽  
Tracey Rawls ◽  
Diane Young ◽  
Philip Golden ◽  
Laura Vitale ◽  
...  

BackgroundCD27 ligation and PD-1 blockade elicit complementary signals mediating T cell activation and effector function. CD27 is constitutively expressed on most mature T cells and the interaction with its ligand, CD70, plays key roles in T cell costimulation leading to activation, proliferation, enhanced survival, maturation of effector capacity, and memory. The PD-1/PD-L1 pathway plays key roles in inhibiting T cell responses. Pre-clinical studies demonstrate synergy in T cell activation and anti-tumor activity when combining a CD27 agonist antibody with PD-(L)1 blockade, and clinical studies have confirmed the feasibility of this combination by demonstrating safety and biological and clinical activity. CDX-527 is a novel human bispecific antibody containing a neutralizing, high affinity IgG1k PD-L1 mAb (9H9) and the single chain Fv fragment (scFv) of an agonist anti-CD27 mAb (2B3) genetically attached to the C-terminus of each heavy chain, thereby making CDX-527 bivalent for each target. Pre-clinical studies have demonstrated enhanced T cell activation by CDX-527 and anti-tumor activity of a surrogate bispecific compared to individual mAb combinations, and together with the IND-enabling studies support the advancement of CDX-527 into the clinic.MethodsA Phase 1 first-in-human, open-label, non-randomized, multi-center, dose-escalation and expansion study evaluating safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of CDX-527 is ongoing. Eligible patients have advanced solid tumor malignancies and have progressed on standard-of-care therapy. Patients must have no more than one prior anti-PD-1/L1 for tumor types which have anti-PD-1/L1 approved for that indication and no prior anti-PD-1/L1 for tumor types that do not have anti-PD-1/L1 approved for that indication. CDX-527 is administered intravenously once every two weeks with doses ranging from 0.03 mg/kg up to 10.0 mg/kg or until the maximum tolerated dose. The dose-escalation phase initiates with a single patient enrolled in cohort 1. In the absence of a dose limiting toxicity or any ≥ grade 2 treatment related AE, cohort 2 will enroll in a similar manner as cohort 1. Subsequent dose-escalation cohorts will be conducted in 3+3 manner. In the tumor-specific expansion phase, up to 4 individual expansion cohort(s) of patients with specific solid tumors of interest may be enrolled to further characterize the safety, PK, PD, and efficacy of CDX 527. Tumor assessments will be performed every 8-weeks by the investigator in accordance with iRECIST. Biomarker assessments will include characterizing the effects on peripheral blood immune cells and cytokines, and for the expansion cohorts, the impact of CDX-527 on the tumor microenvironment.ResultsN/AConclusionsN/ATrial RegistrationNCT04440943Ethics ApprovalThe study was approved by WIRB for Northside Hospital, approval number 20201542


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


2011 ◽  
Vol 30 (1) ◽  
pp. 25-29 ◽  
Author(s):  
I. Y. Ledezma-Lozano ◽  
J. J. Padilla-Martínez ◽  
S. D. Leyva-Torres ◽  
I. Parra-Rojas ◽  
M. G. Ramírez-Dueñas ◽  
...  

Objective:Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology in which inflammatory pathology involves T cell activation and the CD28 costimulatory molecule involved in T cell presentation. The gene includes the CD28 IVS3 +17T/C polymorphism that could be associated with susceptibility to RA whereas the soluble concentrations of CD28 (sCD28) could be related to clinical activity.Methods:We investigated the CD28 IVS3 +17T/C polymorphism in 200 RA patients and 200 healthy subjects (HS). Furthermore, we quantified the sCD28 concentrations in 77 samples of each group. We applied indexes focused to determine the activity and disability (DAS28 and Spanish HAQ-DI, respectively) in RA patients.Methods:We investigated the CD28 IVS3 +17T/C polymorphism in 200 RA patients and 200 healthy subjects (HS). Furthermore, we quantified the sCD28 concentrations in 77 samples of each group. We applied indexes focused to determine the activity and disability (DAS28 and Spanish HAQ-DI, respectively) in RA patients.Results:RA patients had significantly higher frequencies of the CD28 T allele compared to HS (p= 0.032 OR = 1.59, C.I. 1.02–2.49). In addition, the IVS3 +17 T/T genotype frequency was also increased in RA vs. HS (p= 0.026). The RA patients showed higher sCD28 serum levels than HS (p= 0.001). Carriers of the T/T genotype in RA patients showed higher sCD28 levels than C/C carriers (p= 0.047). In addition, a correlation between sCD28 and Spanish HAQ-DI (correlation, 0.272;p= 0.016), was found.Conclusion:The T allele in CD28 IVS3 +17T/C polymorphism is associated with a susceptibility to RA in Western Mexico. In addition, increased sCD28 levels are related to T/T genotype in RA patients.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Maja-Theresa Dieterlen ◽  
Hartmuth B. Bittner ◽  
Attila Tarnok ◽  
Jens Garbade ◽  
Stefan Dhein ◽  
...  

Background. Cardiopulmonary bypass surgery (CPBS) is associated with an increased risk for infections or with subsequent organ dysfunction. As T cell activation is a central mechanism during inflammatory processes, we developed an assay to evaluate T cell activation pathways in patients undergoing CPBS.Methods. Blood was obtained from eleven patients undergoing CPBS preoperatively, on postoperative day (POD)-3, and on POD-7 and was stimulated with different concentrations of Concanavalin A (ConA). Cyclosporine and sirolimus, inhibiting different pathways of the T cell cycle, were added to blood ex vivo. Expression of T cell activation markers CD25 and CD95 was analyzed by flow cytometry.Results. In untreated blood, expression of CD25 and CD95 significantly increased with higher ConA concentrations(P<0.05)and decreased for all ConA concentrations for both antigens over the study time(P<0.05). Independently from the ConA concentration, inhibition of CD25 and CD95 expression was highest preoperatively for sirolimus and on POD-3 for cyclosporine. At all time points, inhibition of CD25 and CD95 expression was significantly higher after cyclosporine compared to sirolimus treatment(P<0.001).Conclusion. Our results showed that different pathways of T cell activation are impaired after CPBS. Such knowledge may offer the opportunity to identify patients at risk for postoperative complications.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4566-4566
Author(s):  
Matthias Krusch ◽  
Sabine Wintterle ◽  
Lieping Chen ◽  
Lothar Kanz ◽  
Heinz Wiendl ◽  
...  

Abstract Objective: Expression of the B7-homologue B7-H1 (PD1-Ligand) has been proposed to enable tumor cells to evade immune surveillance. Recently, B7-H1 on murine leukemia cells was reported to mediate resistance to cytolytic T-cell destruction. In this study we investigated the expression and functional role of the B7-homologue B7-H1 in human leukemia. Patients and Methods: Leukemia cells from 20 patients and 9 human leukemia cell lines were investigated for B7-H1 expression by flow cytometry. Functional relevance of B7-H1 for tumor-immune interactions was assessed by coculture experiments using purified, alloreactive CD4 and CD8 T-cells in the presence of a neutralizing anti-B7-H1 antibody. Results: Significant B7-H1 expression levels on leukemia cells were detected in 13 of 20 patients and in 8 of 9 cell lines. In contrast to various other tumor entities and the data reported from a murine leukemia system we did not observe any significant inhibitory effect of leukemia-derived B7-H1 on CD4 and CD8 cytokine production (IFN-g, IL-2) or expression of T-cell activation markers (ICOS, CD69). In the presence of a neutralizing B7-H1 antibody (mAb 5H1) no significant changes in T cell IFN-g or IL-2 production were observed. Conclusions: Our data demonstrate that leukemia-derived B7-H1 seems to have no direct influence on T-cell activation and cytokine production in humans. Further experiments are warranted to delineate factors and characterize yet unidentified B7-H1 receptor(s) that determine inhibitory and stimulatory functions of B7-H1 in human leukemia.


Sign in / Sign up

Export Citation Format

Share Document