scholarly journals MDMX acidic domain inhibits p53 DNA binding in vivo and regulates tumorigenesis

2018 ◽  
Vol 115 (15) ◽  
pp. E3368-E3377 ◽  
Author(s):  
Qingling Huang ◽  
Lihong Chen ◽  
Leixiang Yang ◽  
Xiaoling Xie ◽  
Lin Gan ◽  
...  

The MDM2 homolog MDMX oncoprotein is indispensable for inhibition of p53 during normal embryonic development and malignant transformation, yet how MDMX harnesses p53 functions is unclear. In addition to a canonical N-terminal p53-binding domain, recent work suggests the central acidic domain of MDMX regulates p53 interaction through intramolecular mimicry and engages in second-site interaction with the p53 core domain in vitro. To test the physiological relevance of these interactions, we generated an MDMX knockin mouse having substitutions in a conserved WW motif necessary for these functions (W201S/W202G). Notably, MDMXSG cells have normal p53 level but increased p53 DNA binding and target gene expression, and rapidly senesce. In vivo, MDMXSG inhibits early-phase disease in Eµ-Myc transgenic mice but accelerates the onset of lethal lymphoma and shortens overall survival. Therefore, MDMX is an important regulator of p53 DNA binding, which complements the role of MDM2 in regulating p53 level. Furthermore, the results suggest that the WW motif has dual functions that regulate p53 and inhibit Myc-driven lymphomas independent of p53.

2005 ◽  
Vol 79 (13) ◽  
pp. 8661-8664 ◽  
Author(s):  
Stephen Schuck ◽  
Arne Stenlund

ABSTRACT Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4800-4812 ◽  
Author(s):  
José Córdoba-Chacón ◽  
Manuel D. Gahete ◽  
Ana I. Pozo-Salas ◽  
Antonio J. Martínez-Fuentes ◽  
Luis de Lecea ◽  
...  

Cortistatin (CST) and somatostatin (SST) evolve from a common ancestral gene and share remarkable structural, pharmacological, and functional homologies. Although CST has been considered as a natural SST-analogue acting through their shared receptors (SST receptors 1–5), emerging evidence indicates that these peptides might in fact exert unique roles via selective receptors [e.g. CST, not SST, binds ghrelin receptor growth hormone secretagogue receptor type 1a (GHS-R1a)]. To determine whether the role of endogenous CST is different from SST, we characterized the endocrine-metabolic phenotype of male/female CST null mice (cort−/−) at hypothalamic-pituitary-systemic (pancreas-stomach-adrenal-liver) levels. Also, CST effects on hormone expression/secretion were evaluated in primary pituitary cell cultures from male/female mice and female primates (baboons). Specifically, CST exerted an unexpected stimulatory role on prolactin (PRL) secretion, because both male/female cort−/− mice had reduced PRL levels, and CST treatment (in vivo and in vitro) increased PRL secretion, which could be blocked by a GHS-R1a antagonist in vitro and likely relates to the decreased success of female cort−/− in first-litter pup care at weaning. In contrast, CST inhibited GH and adrenocorticotropin-hormone axes in a gender-dependent fashion. In addition, a rise in acylated ghrelin levels was observed in female cort−/− mice, which were associated with an increase in stomach ghrelin/ghrelin O-acyl transferase expression. Finally, CST deficit uncovered a gender-dependent role of this peptide in the regulation of glucose-insulin homeostasis, because male, but not female, cort−/− mice developed insulin resistance. The fact that these actions are not mimicked by SST and are strongly gender dependent offers new grounds to investigate the hitherto underestimated physiological relevance of CST in the regulation of physiological/metabolic processes.


2020 ◽  
Vol 21 (24) ◽  
pp. 9401
Author(s):  
Antonio Bouthelier ◽  
Florinda Meléndez-Rodríguez ◽  
Andrés A. Urrutia ◽  
Julián Aragonés

Cellular response to hypoxia is controlled by the hypoxia-inducible transcription factors HIF1α and HIF2α. Some genes are preferentially induced by HIF1α or HIF2α, as has been explored in some cell models and for particular sets of genes. Here we have extended this analysis to other HIF-dependent genes using in vitro WT8 renal carcinoma cells and in vivo conditional Vhl-deficient mice models. Moreover, we generated chimeric HIF1/2 transcription factors to study the contribution of the HIF1α and HIF2α DNA binding/heterodimerization and transactivation domains to HIF target specificity. We show that the induction of HIF1α-dependent genes in WT8 cells, such as CAIX (CAR9) and BNIP3, requires both halves of HIF, whereas the HIF2α transactivation domain is more relevant for the induction of HIF2 target genes like the amino acid carrier SLC7A5. The HIF selectivity for some genes in WT8 cells is conserved in Vhl-deficient lung and liver tissue, whereas other genes like Glut1 (Slc2a1) behave distinctly in these tissues. Therefore the relative contribution of the DNA binding/heterodimerization and transactivation domains for HIF target selectivity can be different when comparing HIF1α or HIF2α isoforms, and that HIF target gene specificity is conserved in human and mouse cells for some of the genes analyzed.


2016 ◽  
Vol 113 (19) ◽  
pp. E2558-E2563 ◽  
Author(s):  
Xi Wei ◽  
Shaofang Wu ◽  
Tanjing Song ◽  
Lihong Chen ◽  
Ming Gao ◽  
...  

The MDMX oncoprotein is an important regulator of tumor suppressor p53 activity during embryonic development. Despite sequence homology to the ubiquitin E3 ligase MDM2, MDMX depletion activates p53 without significant increase in p53 level, implicating a degradation-independent mechanism. We present evidence that MDMX inhibits the sequence-specific DNA binding activity of p53. This function requires the cooperation between MDMX and CK1α, and phosphorylation of S289 on MDMX. Depletion of MDMX or CK1α increases p53 DNA binding without stabilization of p53. A proteolytic fragment release assay revealed that in the MDMX–p53 complex, the MDMX acidic domain and RING domain interact stably with the p53 DNA binding domain. These interactions are referred to as secondary interactions because they only occur after the canonical-specific binding between the MDMX and p53 N termini, but exhibit significant binding stability in the mature complex. CK1α cooperates with MDMX to inhibit p53 DNA binding by further stabilizing the MDMX acidic domain and p53 core domain interaction. These results suggest that secondary intermolecular interaction is important in p53 regulation by MDMX, which may represent a common phenomenon in complexes containing multidomain proteins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Di Xiao ◽  
Ruiye Bi ◽  
Xianwen Liu ◽  
Jie Mei ◽  
Nan Jiang ◽  
...  

Abstract Notch signaling is involved in the early onset of osteoarthritis. The aim of this study was to investigate the role of Notch signaling changes during proliferation and differentiation of chondrocyte, and to testify the mechanism of MMP-13 regulation by Notch and Runx2 expression changes during osteoarthritis. In this study, Chondrocytes were isolated from rat knee cartilages. Notch signaling was activated/inhibited by Jagged-1/DAPT. Proliferative capacity of Chondrocytes was analyzed by CCK-8 staining and EdU labeling. ColX, Runx2 and MMP-13 expressions were analyzed as cell differentiation makers. Then, Runx2 gene expression was interfered using lentivirus transfection (RNAi) and was over-expressed by plasmids transfected siRNA in chondrocytes, and MMP-13 expression was analyzed after Jagged-1/DAPT treatment. In vivo, an intra-articular injection of shRunx2 lentivirus followed with Jagged1/DAPT treatments was performed in rats. MMP-13 expression in articular cartilage was detected by immunohistochemistry. Finally, MMP-13 expression changes were analyzed in chondrocytes under IL-1β stimulation. Our findings showed that, CCK-8 staining and EdU labeling revealed suppression of cell proliferation by Notch signaling activation after Jagged-1 treatment in chondrocytes. Promoted differentiation was also observed, characterized by increased expressions of Col X, MMP-13 and Runx2. Meanwhile, Sox9, aggrecan and Col II expressions were down-regulated. The opposite results were observed in Notch signaling inhibited cells by DAPT treatment. In addition, Runx2 RNAi significantly attenuated the ‘regulatory sensitivity’ of Notch signaling on MMP-13 expression both in vitro and in vivo. However, we found there wasn’t significant changes of this ‘regulatory sensitivity’ of Notch signaling after Runx2 over-expression. Under IL-1β circumstance, MMP-13 expression could be reduced by both DAPT treatment and Runx2 RNAi, while Runx2 interference also attenuated the ‘regulatory sensitivity’ of Notch in MMP-13 under IL-1β stimulation. In conclusion, Notch signaling is an important regulator on rat chondrocyte proliferation and differentiation, and this regulatory effect was partially mediated by proper Runx2 expression under both normal and IL-1β circumstances. In the meanwhile, DAPT treatment could effectively suppress expression of MMP-13 stimulated by IL-1 β.


2019 ◽  
Vol 133 (22) ◽  
pp. 2265-2282 ◽  
Author(s):  
Zhengzhe Feng ◽  
Xiaoxi Zhang ◽  
Li Li ◽  
Chuanchuan Wang ◽  
Mingtao Feng ◽  
...  

Abstract Tumor-associated macrophages (TAMs) play a regulatory role in inflammation and cancer. Exosomes derived from macrophages carrying microRNAs (miRNAs or miRs) are of great value for cancer therapy. Gremlin 1 (GREM1), a member of the antagonists of secreted bone morphogenetic protein, has been implicated in the pathophysiology of multiple diseases or cancers. Based on the predictions of miRNA–mRNA interaction, GREM1 was found to be a target gene of miR-155-5p. Here, the present study aims to explore the role of TAM-derived exosomal miR-155-5p by regulating GREM1 in intracranial aneurysm (IA). The collected results showed that GREM1 was down-regulated in IA, while miR-155-5p was up-regulated in TAM-derived exosomes. Smooth muscle cells (SMCs) were co-cultured with TAMs or exposed to exosomes derived from TAMs transfected with either miR-155-5p mimic or miR-155-5p inhibitor for exploring their roles in proliferation and migration of SMCs in vitro. Accordingly, in vitro experiments showed that TAM-derived exosomal miR-155-5p could promote proliferation and migration of SMCs by targeting GREM1. The effects of TAM-derived exosomal miR-155-5p on IA formation and TAM activation and infiltration by regulation of GREM1 in vivo were measured in IA rats injected with exosomes or those from TAMs transfected with miR-155-5p inhibitor. In vivo experimental results consistently confirmed that TAM-derived exosomes carrying miR-155-5p promoted IA formation and TAM activation and infiltration. In conclusion, TAM-derived exosomal miR-155-5p promotes IA formation via GREM1, which points to miR-155-5p as a possible therapeutic target for IA.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1420-1420
Author(s):  
Jonathan E. Grim ◽  
Olga Sala ◽  
Nack Gyun Chung ◽  
Jerald Radich ◽  
Barbara J. Varnum-Finney ◽  
...  

Abstract T-cell neoplasms frequently sustain mutations in the Notch1 gene, leading to the expression of constitutively active Notch proteins. Such mutations often target the C-terminal PEST domain, which is known to be involved in protein stability. The ubiquitin ligase Fbw7/hdcd4/Sel-10 is a tumor suppressor that negatively regulates Notch function by targeting the Notch protein for ubiquitination and proteasomal degradation. Although the PEST domain is known to be important for Fbw7/Notch interactions, the specific residues that regulate binding of Notch to Fbw7 have not been defined. Based on the structural motifs (known as phosphodegrons) common to known substrates of Fbw7, we have identified two candidate peptide sequences within the Notch protein and have generated a series of mutants in these regions. Using co-immunoprecipitation assays, we show that one potential phosphodegron that is outside of the PEST domain does not appear to influence Notch binding to Fbw7. However, a second potential phosphodegron is present within the PEST domain and contains a conserved threonine residue (T2512) which is central to binding of Fbw7 to Notch. A mutant in which this residue is replaced by alanine (T2512A) shows a prolonged half life when compared to wild type Notch ICD, supporting its role in Notch stability. To evaluate the role of Fbw7 mediated Notch degradation in vitro and in vivo, we used lentiviral vectors to transfect hematopoietic cells with shRNA targeting Fbw7. These studies demonstrate that Fbw7 knockdown leads to phenotypes consistent with increased Notch activity. Because Notch is commonly mutated in human leukemias, we hypothesized that Fbw7 may also sustain mutations that lead to loss of Notch regulation. We evaluated primary human T cell leukemias for mutations in Fbw7 and found that 1 of 23 samples contains a heterozygous mutation in the Fbw7 common region (R505C). We show that this mutant is deficient in binding to Notch, suggesting that Fbw7 mutation may contribute to the deregulation of Notch that is commonly seen in T-cell neoplasms. Together, this work shows that Fbw7 is an important regulator of Notch function whose mutation may be an important step in leukemogenesis.


1999 ◽  
Vol 19 (12) ◽  
pp. 8219-8225 ◽  
Author(s):  
Hiroshi Asahara ◽  
Sanjoy Dutta ◽  
Hung-Ying Kao ◽  
Ronald M. Evans ◽  
Marc Montminy

ABSTRACT Homeobox (hox) proteins have been shown to regulate cell fate and segment identity by promoting the expression of specific genetic programs. In contrast to their restricted biological action in vivo, however, most homeodomain factors exhibit promiscuous DNA binding properties in vitro, suggesting a requirement for additional cofactors that enhance target site selectivity. In this regard, thepbx family of homeobox genes has been found to heterodimerize with and thereby augment the DNA binding activity of certain hox proteins on a subset of potential target sites. Here we examine the transcriptional properties of a forcedhox-pbx heterodimer containing the pancreas-specific orphan homeobox factor pdx fused to pbx-1a. Compared to the pdx monomer, the forced pdx-pbx1a dimer, displayed 10- to 20-fold-higher affinity for a consensushox-pbx binding site but was completely unable to bind ahox monomer recognition site. The pdx-pbx dimer stimulated target gene expression via an N-terminaltrans-activation domain in pdx that interacts with the coactivator CREB binding protein. The pdx-pbxdimer was also found to repress transcription via a C-terminal domain in pbx-1a that associates with the corepressors SMRT and NCoR. The transcriptional properties of the pdx-pbx1complex appear to be regulated at the level of alternative splicing; apdx-pbx polypeptide containing the pbx1bisoform, which lacks the C-terminal extension in pbx1a, was unable to repress target gene expression via NCoR-SMRT. Sincepbx1a and pbx1b are differentially expressed in endocrine versus exocrine compartments of the adult pancreas, our results illustrate a novel mechanism by which pbx proteins may modulate the expression of specific genetic programs, either positively or negatively, during development.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 87-93
Author(s):  
Mark Lee ◽  
Kevin Struhl

Abstract The TATA-binding protein (TBP) is composed of a highly conserved core domain sufficient for TATA-element binding and preinitiation complex formation as well as a highly divergent N-terminal region that is dispensable for yeast cell viability. In vitro, removal of the N-terminal region domain enhances TBP-TATA association and TBP dimerization. Here, we examine the effects of truncation of the N-terminal region in the context of yeast TBP mutants with specific defects in DNA binding and in interactions with various proteins. For a subset of mutations that disrupt DNA binding and the response to transcriptional activators, removal of the N-terminal domain rescues their transcriptional defects. By contrast, deletion of the N-terminal region is lethal in combination with mutations on a limited surface of TBP. Although this surface is important for interactions with TFIIA and Brf1, TBP interactions with these two factors do not appear to be responsible for this dependence on the N-terminal region. Our results suggest that the N-terminal region of TBP has at least two distinct functions in vivo. It inhibits the interaction of TBP with TATA elements, and it acts positively in combination with a specific region of the TBP core domain that presumably interacts with another protein(s).


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1378-1385
Author(s):  
Chen-Min Sun ◽  
Wen-Yi Zhang ◽  
Shu-Yan Wang ◽  
Gang Qian ◽  
Dong-Liang Pei ◽  
...  

Abstract Aim Renal fibrosis (RF) is a common clinical condition leading to irreversible renal function loss. Tyrosine kinase proteins and microRNAs (miRs) are associated with pathogenesis and we aim to investigate the role of Fer and its partner miR(s) in RF. Method In silico reproduction of Mouse Kidney FibrOmics browser was performed to identify potential miR(s) and target gene(s). In vivo validation was performed in C57BL/6 mice with unilateral ureteral obstruction (UUO). In vitro validation was performed in rat kidney fibroblast NRK-49F cells. Mimics and inhibitors of miR-29c-3p were constructed. The target gene Fer was monitored by RT-PCR and western blotting. The levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in serum and media were measured by ELISA. Results The Fer expression and protein level were gradually increased during 14 days of UUO modeling. miR-29c-3p expression was strongly correlated with that of Fer. In vivo validation showed increased expressions of fibrosis-associated genes and increased phospoho-Smad3 level in the UUO model. Fer-knockdown (KD) significantly decreased expressions of fibrosis-associated genes. Pharmaceutical inhibition of Fer showed similar effects to miR-29c-3p, and miR inhibition showed a significant decrease of excretion of inflammatory factors. Conclusion Dysregulation of miR-29c-3p and Fer plays a role in RF. Pharmaceutical or genetic inhibition of Fer may serve as the potential treatment for RF.


Sign in / Sign up

Export Citation Format

Share Document