scholarly journals Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases

2018 ◽  
Vol 116 (3) ◽  
pp. 970-975 ◽  
Author(s):  
Yue Li ◽  
Marita Führer ◽  
Ehsan Bahrami ◽  
Piotr Socha ◽  
Maja Klaudel-Dreszler ◽  
...  

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical regulator of cell death and inflammation, but its relevance for human disease pathogenesis remains elusive. Studies of monogenic disorders might provide critical insights into disease mechanisms and therapeutic targeting of RIPK1 for common diseases. Here, we report on eight patients from six unrelated pedigrees with biallelic loss-of-function mutations in RIPK1 presenting with primary immunodeficiency and/or intestinal inflammation. Mutations in RIPK1 were associated with reduced NF-κB activity, defective differentiation of T and B cells, increased inflammasome activity, and impaired response to TNFR1-mediated cell death in intestinal epithelial cells. The characterization of RIPK1-deficient patients highlights the essential role of RIPK1 in controlling human immune and intestinal homeostasis, and might have critical implications for therapies targeting RIPK1.

2008 ◽  
Vol 105 (46) ◽  
pp. 17931-17936 ◽  
Author(s):  
Danyvid Olivares-Villagómez ◽  
Yanice V. Mendez-Fernandez ◽  
Vrajesh V. Parekh ◽  
Saif Lalani ◽  
Tiffaney L. Vincent ◽  
...  

Intestinal intraepithelial lymphocytes (IEL) bear a partially activated phenotype that permits them to rapidly respond to antigenic insults. However, this phenotype also implies that IEL must be highly controlled to prevent misdirected immune reactions. It has been suggested that IEL are regulated through the interaction of the CD8αα homodimer with the thymus leukemia (TL) antigen expressed by intestinal epithelial cells. We have generated and characterized mice genetically-deficient in TL expression. Our findings show that TL expression has a critical role in maintaining IEL effector functions. Also, TL deficiency accelerated colitis in a genetic model of inflammatory bowel disease. These findings reveal an important regulatory role of TL in controlling IEL function and intestinal inflammation.


2019 ◽  
Vol 12 ◽  
pp. 175628481882225 ◽  
Author(s):  
Jonathan P. Segal ◽  
Benjamin H. Mullish ◽  
Mohammed Nabil Quraishi ◽  
Animesh Acharjee ◽  
Horace R. T. Williams ◽  
...  

The aetiopathogenesis of inflammatory bowel diseases (IBD) involves the complex interaction between a patient’s genetic predisposition, environment, gut microbiota and immune system. Currently, however, it is not known if the distinctive perturbations of the gut microbiota that appear to accompany both Crohn’s disease and ulcerative colitis are the cause of, or the result of, the intestinal inflammation that characterizes IBD. With the utilization of novel systems biology technologies, we can now begin to understand not only details about compositional changes in the gut microbiota in IBD, but increasingly also the alterations in microbiota function that accompany these. Technologies such as metagenomics, metataxomics, metatranscriptomics, metaproteomics and metabonomics are therefore allowing us a deeper understanding of the role of the microbiota in IBD. Furthermore, the integration of these systems biology technologies through advancing computational and statistical techniques are beginning to understand the microbiome interactions that both contribute to health and diseased states in IBD. This review aims to explore how such systems biology technologies are advancing our understanding of the gut microbiota, and their potential role in delineating the aetiology, development and clinical care of IBD.


2011 ◽  
Vol 11 ◽  
pp. 1536-1547 ◽  
Author(s):  
Donata Lissner ◽  
Britta Siegmund

Inflammasomes are intracellular multiprotein complexes that coordinate the maturation of interleukin (IL)-1β and IL-18 in response to pathogens and metabolic danger. Both cytokines have been linked to intestinal inflammation. However, recently evolving concepts ascribe a major role to the inflammasome in maintaining intestinal homeostasis. This review recapitulates its position in the development of inflammatory bowel disease, thereby outlining a model in which hypo- as well as hyperfunctionality can lead to an imbalance of the system, depending on the specific cell population affected. In the epithelium, the inflammasome is essential for regulation of permeability and epithelial regeneration through sensing of commensal microbes, while excessive inflammasome activation within the lamina propria contributes to severe intestinal inflammation.


2021 ◽  
Vol 18 (1) ◽  
pp. 20-29
Author(s):  
S. A. Bulgakov ◽  
G. M. Chernakova ◽  
E. A. Kleshcheva ◽  
S. V. Simonova

Crohn’s disease and ulcerative colitis are chronic inflammatory bowel diseases, which are often accompanied by inflammation of other organs. This article presents modern data on etiology, pathogenesis and clinical course of inflammatory bowel diseases, as well as information on extraintestinal eye manifestations of nonspecific ulcerative colitis and Crohn’s disease. The role of microbiota, genetic factors, immune system defects in pathogenesis of intestinal inflammation and extraintestinal eye manifestations is considered. The possibility the development of ophthalmopathology not only against the background of intestinal inflammation, but also as a consequence of therapeutic and surgical methods of treatment of ulcerative colitis and Crohn’s disease is noted. The peculiarities of the course of episcleritis/scleritis, keratitis, uveitis, chorioretinitis, optical neuritis for patients with inflammatory bowel diseases are considered. The presence of these complications may reflect the activity of the underlying disease, which in some cases requires correction of therapy. Anterior uveitis and episcleritis/scleritis are the most common extraintestinal manifestations of inflammatory bowel disease. Inflammation of tissues of the posterior segment of the eye and optic nerve against the background of ulcerative colitis and Crohn’s disease are less common, but are of clinical importance, as they can catastrophically damage the structures of the eye and, as a consequence, lead to complete blindness. Considering the possibility of mild clinical symptoms and asymptomatic course of inflammation in the eye envelopes, the importance of ophthalmological examination of all patients with ulcerative colitis and Crohn’s disease is emphasized. Aspects of modern therapy of ophthalmopathology and background intestinal inflammation are highlighted. Biological preparations — antagonists of pro-inflammatory cytokines — have been identified as the most promising in the treatment of inflammatory intestinal diseases and extraintestinal manifestations. The important role of proper nutrition and biologically active supplements containing omega-3 fatty acids, vitamin D, microelements, was noted as auxiliary therapy of both intestinal and extraintestinal inflammation.


2021 ◽  
Author(s):  
Kate L. Jeffrey ◽  
Fatemeh Adiliaghdam ◽  
Hajera Amatullah ◽  
Sreehaas Digumarthi ◽  
Tahnee L. Saunders ◽  
...  

Altered enteric microorganisms in concert with host genetics shape inflammatory bowel disease (IBD) phenotypes. However, insight is limited to bacteria and fungi. We found virus like particles (VLPs) enriched from normal human colon resections, containing eukaryotic viruses and bacteriophages (collectively, the virome), actively elicited atypical anti-inflammatory innate immune programs. Conversely, IBD patient VLPs provoked inflammation, which was successfully dampened by healthy VLPs. The IBD colon tissue virome was perturbed, including enriched Picornovirus Enterovirus B, not previously observed in fecal virome studies. Mice with humanized healthy colon tissue viromes had attenuated intestinal inflammation while those with IBD-derived viromes exhibited exacerbated inflammation in a nucleic acid sensing-dependent fashion. Furthermore, there were detrimental consequences for IBD-associated MDA5 loss-of-function on patient intestinal epithelial cells exposed to healthy or IBD viromes. Our results demonstrate that innate recognition of either healthy or IBD human viromes autonomously influences disease phenotypes in IBD. Harnessing the virome may offer therapeutic and biomarker potential.


2008 ◽  
Vol 3 ◽  
pp. BMI.S630 ◽  
Author(s):  
Linda S. Gutierrez

Crohn's disease and ulcerative colitis are inflammatory bowel diseases (IBD) quite common in the United States and other Western countries. Patients suffering IBD are at greater risk of developing colorectal adenocarcinoma than the general population. Both, the adenoma-carcinoma and the inflammation-carcinogenesis processes are characterized by active angiogenesis. Recent studies also have shown that anti-angiogenesis might be a novel therapeutic approach for IBD. Thrombospondin 1 (TSP1) is an extracellular protein well known for its anti-angiogenic properties. TSP1 also has key functions in inflammation, which is assumed to be the primary cause for carcinogenesis in IBD. This review is focused on the role of TSP1 in colorectal carcinogenesis. The therapeutic effects of TSP derived-peptides on inhibiting the inflammation-carcinogenesis progression are also discussed.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1111 ◽  
Author(s):  
Anaïs Larabi ◽  
Nicolas Barnich ◽  
Hang Thi Thu Nguyen

To communicate with each other, cells release exosomes that transfer their composition, including lipids, proteins and nucleic acids, to neighboring cells, thus playing a role in various pathophysiological processes. During an infection with pathogenic bacteria, such as adherent-invasive E. coli (AIEC) associated with Crohn disease, exosomes secreted by infected cells can have an impact on the innate immune responses of surrounding cells to infection. Furthermore, inflammation can be amplified via the exosomal shuttle during infection with pathogenic bacteria, which could contribute to the development of the associated disease. Since these vesicles can be released in various biological fluids, changes in exosomal content may provide a means for the identification of non-invasive biomarkers for infectious and inflammatory bowel diseases. Moreover, evidence suggests that exosomes could be used as vaccines to prime the immune system to recognize and kill invading pathogens, and as therapeutic components relieving intestinal inflammation. Here, we summarize the current knowledge on the role of exosomes in bacterial infections and highlight their potential use as biomarkers, vaccines and conveyers of therapeutic molecules in inflammatory bowel diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Tiago Nunes ◽  
Claudio Bernardazzi ◽  
Heitor S. de Souza

Cell death mechanisms have been associated with the development of inflammatory bowel diseases in humans and mice. Recent studies suggested that a complex crosstalk between autophagy/apoptosis, microbe sensing, and enhanced endoplasmic reticulum stress in the epithelium could play a critical role in these diseases. In addition, necroptosis, a relatively novel programmed necrosis-like pathway associated with TNF receptor activation, seems to be also present in the pathogenesis of Crohn’s disease and in specific animal models for intestinal inflammation. This review attempts to cover new data related to cell death mechanisms and inflammatory bowel diseases.


2021 ◽  
Vol 22 (21) ◽  
pp. 11365
Author(s):  
Jelena Popov ◽  
Valentina Caputi ◽  
Nandini Nandeesha ◽  
David Avelar Rodriguez ◽  
Nikhil Pai

Ulcerative colitis (UC) is a chronic autoimmune disorder affecting the colonic mucosa. UC is a subtype of inflammatory bowel disease along with Crohn’s disease and presents with varying extraintestinal manifestations. No single etiology for UC has been found, but a combination of genetic and environmental factors is suspected. Research has focused on the role of intestinal dysbiosis in the pathogenesis of UC, including the effects of dysbiosis on the integrity of the colonic mucosal barrier, priming and regulation of the host immune system, chronic inflammation, and progression to tumorigenesis. Characterization of key microbial taxa and their implications in the pathogenesis of UC and colitis-associated cancer (CAC) may present opportunities for modulating intestinal inflammation through microbial-targeted therapies. In this review, we discuss the microbiota-immune crosstalk in UC and CAC, as well as the evolution of microbiota-based therapies.


Sign in / Sign up

Export Citation Format

Share Document