scholarly journals Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome

2020 ◽  
Vol 117 (13) ◽  
pp. 7255-7262 ◽  
Author(s):  
Joseph R. Hoyt ◽  
Kate E. Langwig ◽  
Keping Sun ◽  
Katy L. Parise ◽  
Aoqiang Li ◽  
...  

Disease outbreaks and pathogen introductions can have significant effects on host populations, and the ability of pathogens to persist in the environment can exacerbate disease impacts by fueling sustained transmission, seasonal epidemics, and repeated spillover events. While theory suggests that the presence of an environmental reservoir increases the risk of host declines and threat of extinction, the influence of reservoir dynamics on transmission and population impacts remains poorly described. Here we show that the extent of the environmental reservoir explains broad patterns of host infection and the severity of disease impacts of a virulent pathogen. We examined reservoir and host infection dynamics and the resulting impacts of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome, in 39 species of bats at 101 sites across the globe. Lower levels of pathogen in the environment consistently corresponded to delayed infection of hosts, fewer and less severe infections, and reduced population impacts. In contrast, an extensive and persistent environmental reservoir led to early and widespread infections and severe population declines. These results suggest that continental differences in the persistence or decay of P. destructans in the environment altered infection patterns in bats and influenced whether host populations were stable or experienced severe declines from this disease. Quantifying the impact of the environmental reservoir on disease dynamics can provide specific targets for reducing pathogen levels in the environment to prevent or control future epidemics.

2015 ◽  
Vol 112 (24) ◽  
pp. 7478-7483 ◽  
Author(s):  
Anthony J. O’Donoghue ◽  
Giselle M. Knudsen ◽  
Chapman Beekman ◽  
Jenna A. Perry ◽  
Alexander D. Johnson ◽  
...  

Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.


2015 ◽  
Vol 2 (2) ◽  
pp. 140470 ◽  
Author(s):  
Laura E. Grieneisen ◽  
Sarah A. Brownlee-Bouboulis ◽  
Joseph S. Johnson ◽  
DeeAnn M. Reeder

White-nose syndrome (WNS), an emerging infectious disease caused by the novel fungus Pseudogymnoascus destructans , has devastated North American bat populations since its discovery in 2006. The little brown myotis, Myotis lucifugus , has been especially affected. The goal of this 2-year captive study was to determine the impact of hibernacula temperature and sex on WNS survivorship in little brown myotis that displayed visible fungal infection when collected from affected hibernacula. In study 1, we found that WNS-affected male bats had increased survival over females and that bats housed at a colder temperature survived longer than those housed at warmer temperatures. In study 2, we found that WNS-affected bats housed at a colder temperature fared worse than unaffected bats. Our results demonstrate that WNS mortality varies among individuals, and that colder hibernacula are more favourable for survival. They also suggest that female bats may be more negatively affected by WNS than male bats, which has important implications for the long-term survival of the little brown myotis in eastern North America.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20142335 ◽  
Author(s):  
Kate E. Langwig ◽  
Winifred F. Frick ◽  
Rick Reynolds ◽  
Katy L. Parise ◽  
Kevin P. Drees ◽  
...  

Seasonal patterns in pathogen transmission can influence the impact of disease on populations and the speed of spatial spread. Increases in host contact rates or births drive seasonal epidemics in some systems, but other factors may occasionally override these influences. White-nose syndrome, caused by the emerging fungal pathogen Pseudogymnoascus destructans , is spreading across North America and threatens several bat species with extinction. We examined patterns and drivers of seasonal transmission of P. destructans by measuring infection prevalence and pathogen loads in six bat species at 30 sites across the eastern United States. Bats became transiently infected in autumn, and transmission spiked in early winter when bats began hibernating. Nearly all bats in six species became infected by late winter when infection intensity peaked. In summer, despite high contact rates and a birth pulse, most bats cleared infections and prevalence dropped to zero. These data suggest the dominant driver of seasonal transmission dynamics was a change in host physiology, specifically hibernation. Our study is the first, to the best of our knowledge, to describe the seasonality of transmission in this emerging wildlife disease. The timing of infection and fungal growth resulted in maximal population impacts, but only moderate rates of spatial spread.


2015 ◽  
Vol 12 (104) ◽  
pp. 20141379 ◽  
Author(s):  
Lauren M. Childs ◽  
Caroline O. Buckee

The duration of infection is fundamental to the epidemiological behaviour of any infectious disease, but remains one of the most poorly understood aspects of malaria. In endemic areas, the malaria parasite Plasmodium falciparum can cause both acute, severe infections and asymptomatic, chronic infections through its interaction with the host immune system. Frequent superinfection and massive parasite genetic diversity make it extremely difficult to accurately measure the distribution of infection lengths, complicating the estimation of basic epidemiological parameters and the prediction of the impact of interventions. Mathematical models have qualitatively reproduced parasite dynamics early during infection, but reproducing long-lived chronic infections remains much more challenging. Here, we construct a model of infection dynamics to examine the consequences of common biological assumptions for the generation of chronicity and the impact of co-infection. We find that although a combination of host and parasite heterogeneities are capable of generating chronic infections, they do so only under restricted parameter choices. Furthermore, under biologically plausible assumptions, co-infection of parasite genotypes can alter the course of infection of both the resident and co-infecting strain in complex non-intuitive ways. We outline the most important puzzles for within-host models of malaria arising from our analysis, and their implications for malaria epidemiology and control.


2016 ◽  
Vol 283 (1826) ◽  
pp. 20152861 ◽  
Author(s):  
Joseph R. Hoyt ◽  
Kate E. Langwig ◽  
Keping Sun ◽  
Guanjun Lu ◽  
Katy L. Parise ◽  
...  

Predicting species' fates following the introduction of a novel pathogen is a significant and growing problem in conservation. Comparing disease dynamics between introduced and endemic regions can offer insight into which naive hosts will persist or go extinct, with disease acting as a filter on host communities. We examined four hypothesized mechanisms for host–pathogen persistence by comparing host infection patterns and environmental reservoirs for Pseudogymnoascus destructans (the causative agent of white-nose syndrome) in Asia, an endemic region, and North America, where the pathogen has recently invaded. Although colony sizes of bats and hibernacula temperatures were very similar, both infection prevalence and fungal loads were much lower on bats and in the environment in Asia than North America. These results indicate that transmission intensity and pathogen growth are lower in Asia, likely due to higher host resistance to pathogen growth in this endemic region, and not due to host tolerance, lower transmission due to smaller populations, or lower environmentally driven pathogen growth rate. Disease filtering also appears to be favouring initially resistant species in North America. More broadly, determining the mechanisms allowing species persistence in endemic regions can help identify species at greater risk of extinction in introduced regions, and determine the consequences for disease dynamics and host–pathogen coevolution.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jenny Urbina ◽  
Tara Chestnut ◽  
Jennifer M. Allen ◽  
Taal Levi

AbstractUnderstanding how a pathogen can grow on different substrates and how this growth impacts its dispersal are critical to understanding the risks and control of emerging infectious diseases. Pseudogymnoascus destructans (Pd) causes white-nose syndrome (WNS) in many bat species and can persist in, and transmit from, the environment. We experimentally evaluated Pd growth on common substrates to better understand mechanisms of pathogen persistence, transmission and viability. We inoculated autoclaved guano, fresh guano, soil, and wood with live Pd fungus and evaluated (1) whether Pd grows or persists on each (2) if spores of the fungus remain viable 4 months after inoculation on each substrate, and (3) whether detection and quantitation of Pd on swabs is sensitive to the choice to two commonly used DNA extraction kits. After inoculating each substrate with 460,000 Pd spores, we collected ~ 0.20 g of guano and soil, and swabs from wood every 16 days for 64 days to quantify pathogen load through time using real-time qPCR. We detected Pd on all substrates over the course of the experiment. We observed a tenfold increase in pathogen loads on autoclaved guano and persistence but not growth in fresh guano. Pathogen loads increased marginally on wood but declined ~ 60-fold in soil. After four months, apparently viable spores were harvested from all substrates but germination did not occur from fresh guano. We additionally found that detection and quantitation of Pd from swabs of wood surfaces is sensitive to the DNA extraction method. The commonly used PrepMan Ultra Reagent protocol yielded substantially less DNA than did the QIAGEN DNeasy Blood and Tissue Kit. Notably the PrepMan Ultra Reagent failed to detect Pd in many wood swabs that were detected by QIAGEN and were subsequently found to contain substantial live conidia. Our results indicate that Pd can persist or even grow on common environmental substrates with results dependent on whether microbial competitors have been eliminated. Although we observed clear rapid declines in Pd on soil, viable spores were harvested four months after inoculation. These results suggest that environmental substrates and guano can in general serve as infectious environmental reservoirs due to long-term persistence, and even growth, of live Pd. This should inform management interventions to sanitize or modify structures to reduce transmission risk as well early detection rapid response (EDRR) planning.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
G. Cencetti ◽  
G. Santin ◽  
A. Longa ◽  
E. Pigani ◽  
A. Barrat ◽  
...  

AbstractDigital contact tracing is a relevant tool to control infectious disease outbreaks, including the COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill this gap with a modeling framework informed by empirical high-resolution contact data to analyze the impact of digital contact tracing in the COVID-19 pandemic. We investigate how well contact tracing apps, coupled with the quarantine of identified contacts, can mitigate the spread in real environments. We find that restrictive policies are more effective in containing the epidemic but come at the cost of unnecessary large-scale quarantines. Policy evaluation through their efficiency and cost results in optimized solutions which only consider contacts longer than 15–20 minutes and closer than 2–3 meters to be at risk. Our results show that isolation and tracing can help control re-emerging outbreaks when some conditions are met: (i) a reduction of the reproductive number through masks and physical distance; (ii) a low-delay isolation of infected individuals; (iii) a high compliance. Finally, we observe the inefficacy of a less privacy-preserving tracing involving second order contacts. Our results may inform digital contact tracing efforts currently being implemented across several countries worldwide.


2021 ◽  
Vol 11 (11) ◽  
pp. 5114
Author(s):  
Hyung-Chul Rah ◽  
Hyeon-Woong Kim ◽  
Aziz Nasridinov ◽  
Wan-Sup Cho ◽  
Seo-Hwa Choi ◽  
...  

In this paper we demonstrate the threshold effects of infectious diseases on livestock prices. Daily retail prices of pork and chicken were used as structured data; news and SNS mentions of African Swine Fever (ASF) and Avian Influenza (AI) were used as unstructured data. Models were tested for the threshold effects of disease-related news and SNS frequencies, specifically those related to ASF and AI, on the retail prices of pork and chicken, respectively. The effects were found to exist, and the values of ASF-related news on pork prices were estimated to be −9 and 8, indicating that the threshold autoregressive (TAR) model can be divided into three regimes. The coefficients of the ASF-related SNS frequencies on pork prices were 1.1666, 0.2663 and −0.1035 for regimes 1, 2 and 3, respectively, suggesting that pork prices increased by 1.1666 Korean won in regime 1 when ASF-related SNS frequencies increased. To promote pork consumption by SNS posts, the required SNS frequencies were estimated to have impacts as great as one standard deviation in the pork price. These values were 247.057, 1309.158 and 2817.266 for regimes 1, 2 and 3, respectively. The impact response periods for pork prices were estimated to last 48, 6, and 8 days for regimes 1, 2 and 3, respectively. When the prediction accuracies of the TAR and autoregressive (AR) models with regard to pork prices were compared for the root mean square error, the prediction accuracy of the TAR model was found to be slightly better than that of the AR. When the threshold effect of AI-related news on chicken prices was tested, a linear relationship appeared without a threshold effect. These findings suggest that when infectious diseases such as ASF occur for the first time, the impact on livestock prices is significant, as indicated by the threshold effect and the long impact response period. Our findings also suggest that the impact on livestock prices is not remarkable when infectious diseases occur multiple times, as in the case of AI. To date, this study is the first to suggest the use of SNS to promote meat consumption.


Oryx ◽  
2016 ◽  
Vol 52 (2) ◽  
pp. 374-381 ◽  
Author(s):  
Juan M. Pleguezuelos ◽  
Mónica Feriche ◽  
José C. Brito ◽  
Soumía Fahd

AbstractTraditional activities that potentially threaten biodiversity represent a challenge to conservationists as they try to reconcile the cultural dimensions of such activities. Quantifying the impact of traditional activities on biodiversity is always helpful for decision making in conservation. In the case of snake charming in Morocco, the practice was introduced there 500 years ago by the religious order the Aissawas, and is now an attraction in the country's growing tourism industry. As a consequence wild snake populations may be threatened by overexploitation. The focal species for snake charming, the Egyptian cobra Naja haje, is undergoing both range and population declines. We estimated the level of exploitation of snakes based on field surveys and questionnaires administered to Aissawas during 2003–2014, and compared our results with those of a study conducted 25 years previously. Aissawas use four venomous and four non-venomous species for snake charming and we estimate they harvest a minimum of 4,500 individuals annually, mostly venomous snakes. For exhibition purposes they selectively remove the largest specimens from the wild (i.e. those that could have the highest reproductive output). Compared to the previous data, we detected (1) a reduction in the number of species collected, (2) an increased distance to collecting fields, and (3) an increase in the market price for snakes, after correction for accumulated inflation, signifying a higher demand for these animals.


Sign in / Sign up

Export Citation Format

Share Document