scholarly journals Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro

2020 ◽  
Vol 117 (18) ◽  
pp. 9973-9980 ◽  
Author(s):  
Asiya Gusa ◽  
Jonathan D. Williams ◽  
Jang-Eun Cho ◽  
Anna Floyd Averette ◽  
Sheng Sun ◽  
...  

When transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeastlike fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 (rap/FK506) and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNA interference (RNAi) pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.

2020 ◽  
Author(s):  
Asiya Gusa ◽  
Jonathan D. Williams ◽  
Jang-Eun Cho ◽  
Anna Floyd-Averette ◽  
Sheng Sun ◽  
...  

ABSTRACTWhen transitioning from the environment, pathogenic microorganisms must adapt rapidly to survive in hostile host conditions. This is especially true for environmental fungi that cause opportunistic infections in immunocompromised patients since these microbes are not well adapted human pathogens. Cryptococcus species are yeast-like fungi that cause lethal infections, especially in HIV-infected patients. Using Cryptococcus deneoformans in a murine model of infection, we examined contributors to drug resistance and demonstrated that transposon mutagenesis drives the development of 5-fluoroorotic acid (5FOA) resistance. Inactivation of target genes URA3 or URA5 primarily reflected the insertion of two transposable elements (TEs): the T1 DNA transposon and the TCN12 retrotransposon. Consistent with in vivo results, increased rates of mutagenesis and resistance to 5FOA and the antifungal drugs rapamycin/FK506 and 5-fluorocytosine (5FC) were found when Cryptococcus was incubated at 37° compared to 30° in vitro, a condition that mimics the temperature shift that occurs during the environment-to-host transition. Inactivation of the RNAi pathway, which suppresses TE movement in many organisms, was not sufficient to elevate TE movement at 30° to the level observed at 37°. We propose that temperature-dependent TE mobilization in Cryptococcus is an important mechanism that enhances microbial adaptation and promotes pathogenesis and drug resistance in the human host.SIGNIFICANCE STATEMENTThe incidence of infections due to fungal pathogens has dramatically increased in the past few decades with similar increases in human populations with weakened or suppressed immune systems. Understanding the mechanisms by which organisms rapidly adapt during human infection to enhance virulence and evolve drug resistance is important for developing effective treatments. We find that transposon mobilization in the human pathogen Cryptococcus causes genomic mutations in a murine model of infection and promotes resistance to antifungal drugs in vitro. Thermotolerance is a key virulence determinant for pathogenic fungi during the environment-to-host transition, and we demonstrate that a temperature increase is sufficient to trigger transposon mobilization in vitro. The link between temperature stress and transposon-associated mutations may significantly impact adaptation to the host during infection, including the acquisition of drug resistance.


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5256-5267 ◽  
Author(s):  
Lina Happo ◽  
Mark S. Cragg ◽  
Belinda Phipson ◽  
Jon M. Haga ◽  
Elisa S. Jansen ◽  
...  

Abstract DNA-damaging chemotherapy is the backbone of cancer treatment, although it is not clear how such treatments kill tumor cells. In nontransformed lymphoid cells, the combined loss of 2 proapoptotic p53 target genes, Puma and Noxa, induces as much resistance to DNA damage as loss of p53 itself. In Eμ-Myc lymphomas, however, lack of both Puma and Noxa resulted in no greater drug resistance than lack of Puma alone. A third B-cell lymphoma-2 homology domain (BH)3-only gene, Bim, although not a direct p53 target, was up-regulated in Eμ-Myc lymphomas incurring DNA damage, and knockdown of Bim levels markedly increased the drug resistance of Eμ-Myc/Puma−/−Noxa−/− lymphomas both in vitro and in vivo. Remarkably, c-MYC–driven lymphoma cell lines from Noxa−/−Puma−/−Bim−/− mice were as resistant as those lacking p53. Thus, the combinatorial action of Puma, Noxa, and Bim is critical for optimal apoptotic responses of lymphoma cells to 2 commonly used DNA-damaging chemotherapeutic agents, identifying Bim as an additional biomarker for treatment outcome in the clinic.


2019 ◽  
Vol 7 (10) ◽  
pp. 459 ◽  
Author(s):  
Filomena Nogueira ◽  
Shirin Sharghi ◽  
Karl Kuchler ◽  
Thomas Lion

Polymicrobial infections are of paramount importance because of the potential severity of clinical manifestations, often associated with increased resistance to antimicrobial treatment. The intricate interplay with the host and the immune system, and the impact on microbiome imbalance, are of importance in this context. The equilibrium of microbiota in the human host is critical for preventing potential dysbiosis and the ensuing development of disease. Bacteria and fungi can communicate via signaling molecules, and produce metabolites and toxins capable of modulating the immune response or altering the efficacy of treatment. Most of the bacterial–fungal interactions described to date focus on the human fungal pathogen Candida albicans and different bacteria. In this review, we discuss more than twenty different bacterial–fungal interactions involving several clinically important human pathogens. The interactions, which can be synergistic or antagonistic, both in vitro and in vivo, are addressed with a focus on the quorum-sensing molecules produced, the response of the immune system, and the impact on clinical outcome.


2020 ◽  
Vol 117 (36) ◽  
pp. 22473-22483 ◽  
Author(s):  
Caitlin H. Kowalski ◽  
Kaesi A. Morelli ◽  
Daniel Schultz ◽  
Carey D. Nadell ◽  
Robert A. Cramer

Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogenAspergillus fumigatusforms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity withinA. fumigatusbiofilms. Oxygen gradients inevitably arise duringA. fumigatusbiofilm maturation and are both critical for, and the result of,A. fumigatuslate-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base ofA. fumigatusbiofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.


2013 ◽  
Vol 13 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Andrea Lohberger ◽  
Alix T. Coste ◽  
Dominique Sanglard

ABSTRACTAzoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur inCandida albicansprincipally by overexpression of multidrug transporter geneCDR1,CDR2, orMDR1or by overexpression ofERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs)TAC1(involved in the control ofCDR1andCDR2),MRR1(involved in the control ofMDR1), andUPC2(involved in the control ofERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial toC. albicanssurvival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence ofC. albicansin the absence of the selective drug pressure. In this work, the effect of GOF mutations onC. albicansvirulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neitherTAC1norMRR1GOF mutations had a significant effect onC. albicansvirulence. In contrast, the presence of two hyperactiveUPC2alleles inC. albicansresulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate withUPC2hyperactive alleles was observed in competition experiments with the wild typein vivobut notin vitro. Interestingly,UPC2hyperactivity delayed filamentation ofC. albicansafter phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining theUPC2GOF mutation with another hyperactive TF did not compensate for the negative effect ofUPC2on virulence. In conclusion, among the major TFs involved in azole resistance, onlyUPC2had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marufa Nasreen ◽  
Aidan Fletcher ◽  
Jennifer Hosmer ◽  
Qifeng Zhong ◽  
Ama-Tawiah Essilfie ◽  
...  

Extracytoplasmic function (ECF) sigma factors underpin the ability of bacteria to adapt to changing environmental conditions, a process that is particularly relevant in human pathogens that inhabit niches where human immune cells contribute to high levels of extracellular stress. Here, we have characterized the previously unstudied RpoE2 ECF sigma factor from the human respiratory pathogen H. influenzae (Hi) and its role in hypochlorite-induced stress. Exposure of H. influenzae to oxidative stress (HOCl, H2O2) increased rpoE2 gene expression, and the activity of RpoE2 was controlled by a cytoplasmic 67-aa anti-sigma factor, HrsE. RpoE2 regulated the expression of the periplasmic MsrAB peptide methionine sulfoxide reductase that, in H. influenzae, is required for HOCl resistance, thus linking RpoE2 to HOCl stress. Interestingly, a HiΔrpoE2 strain had wild-type levels of resistance to oxidative stress in vitro, but HiΔrpoE2 survival was reduced 26-fold in a mouse model of lung infection, demonstrating the relevance of this sigma factor for H. influenzae pathogenesis. The HiRpoE2 system has some similarity to the ECF sigma factors described in Streptomyces and Neisseria sp. that also control the expression of msr genes. However, HiRpoE2 regulation extended to genes encoding other periplasmic damage repair proteins, an operon containing a DoxX-like protein, and also included selected OxyR-controlled genes. Based on our results, we propose that the highly conserved HiRpoE2 sigma factor is a key regulator of H. influenzae responses to oxidative damage in the cell envelope region that controls a variety of target genes required for survival in the host.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 275-275
Author(s):  
Rolf Schwarzer ◽  
Julia Godau ◽  
Hermann Einsele ◽  
Franziska Jundt

Abstract Tumor cell proliferation and survival of Hodgkin/Reed-Sternberg (HRS) cells are triggered through Jagged1 ligand-induced Notch1 signaling via homotypic and heterotypic cell-cell interactions in classical Hodgkin lymphoma. The developmental pathway Notch partly mediates its effects in HRS cells by stimulation of alternative NF-kB signaling. We further demonstrated that high-level expression of the essential Notch coactivator Mastermind-like 2 and downregulation of the Notch inhibitor Deltex1 contribute to aberrant activation of Notch signaling in HRS cells. Our data suggested that targeting the Notch pathway is a rational treatment strategy in classical Hodgkin lymphoma. In this study we analyzed Notch inhibition by use of the gamma secretase inhibitor GSI XII in a Hodgkin lymphoma xenotransplantation model. To this end the HRS cell line L540cy (1 x 107 cells/per mouse) was transplanted into NOD/SCID mice. After tumor growth (0.3 cm³ mean tumor volume) mice were treated daily with increasing doses of GSI XII (5-10 mg/kg). Surprisingly, L540cy cells were completely drug-resistant in vivo in contrast to high GSI XII sensitivity in vitro. To dissect potential mechanisms of drug resistance we performed human StellARrayTM quantitative polymerase chain reaction (qPCR) arrays to analyze Notch target genes in GSI XII-treated compared to untreated L540cy cells. Interestingly, inhibition of Notch activity resulted in strong mRNA upregulation of the transcription factor glioma-associated oncogene 1 (Gli1), a final effector of the developmental signaling pathway Hedgehog (HH). Chromatin immunoprecipitation (ChIP) further revealed that both negative regulatory Notch target proteins Hey1 and Hes7 directly bind three different N-boxes present in the GLI1 first intron to suppress GLI1 mRNA expression in untreated L540cy cells. In general, the HH pathway is activated through ligand binding of secreted Sonic Hedgehog (SHH). As a result Gli transcription factors translocate to the nucleus and induce target gene expression such as GLI1 or CCND1. Despite high secretion of SHH by HRS cells after two days in culture (conditioned medium), HH signaling was inactive in untreated L540cy cells. Only after release of the negative regulatory Notch targets of the hairy and enhancer of split (HES) family through Notch inhibition and concomitant increase of Gli1 expression, HH signaling was activated by SHH. HH signaling mediated drug resistance of L540cy cells in conditioned medium compared to fresh medium (SHH negative) and thereby compensated for reduced Notch activity in vitro. We hypothesized that this mechanism might contribute to GSI XII drug resistance in vivo. To proof our hypothesis we coinhibited the Notch and HH pathways in L540cy cells. As expected inhibition of the HH pathway alone by use of cyclopamine did not significantly reduce growth of L540cy cells. However, simultaneous targeting of L540cy tumors through GSI XII and cyclopamine efficiently controlled tumor cell growth. Our data indicate a first molecular link between Notch and HH in HRS cells mediating drug resistance. We suggest inhibition of both developmental pathways for effective HRS tumor growth control. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Liu ◽  
Ying Xie ◽  
Jing Guo ◽  
Xin Li ◽  
Jingjing Wang ◽  
...  

AbstractDevelopment of chemoresistance is the main reason for failure of clinical management of multiple myeloma (MM), but the genetic and epigenetic aberrations that interact to confer such chemoresistance remains unknown. In the present study, we find that high steroid receptor coactivator-3 (SRC-3) expression is correlated with relapse/refractory and poor outcomes in MM patients treated with bortezomib (BTZ)-based regimens. Furthermore, in immortalized cell lines, high SRC-3 enhances resistance to proteasome inhibitor (PI)-induced apoptosis. Overexpressed histone methyltransferase NSD2 in patients bearing a t(4;14) translocation or in BTZ-resistant MM cells coordinates elevated SRC-3 by enhancing its liquid–liquid phase separation to supranormally modify histone H3 lysine 36 dimethylation (H3K36me2) modifications on promoters of anti-apoptotic genes. Targeting SRC-3 or interference of its interactions with NSD2 using a newly developed inhibitor, SI-2, sensitizes BTZ treatment and overcomes drug resistance both in vitro and in vivo. Taken together, our findings elucidate a previously unrecognized orchestration of SRC-3 and NSD2 in acquired drug resistance of MM and suggest that SI-2 may be efficacious for overcoming drug resistance in MM patients.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Junjie Cen ◽  
Yanping Liang ◽  
Yong Huang ◽  
Yihui Pan ◽  
Guannan Shu ◽  
...  

Abstract Background There is increasing evidence that circular RNAs (circRNAs) have significant regulatory roles in cancer development and progression; however, the expression patterns and biological functions of circRNAs in renal cell carcinoma (RCC) remain largely elusive. Method Bioinformatics methods were applied to screen for circRNAs differentially expressed in RCC. Analysis of online circRNAs microarray datasets and our own patient cohort indicated that circSDHC (hsa_circ_0015004) had a potential oncogenic role in RCC. Subsequently, circSDHC expression was measured in RCC tissues and cell lines by qPCR assay, and the prognostic value of circSDHC evaluated. Further, a series of functional in vitro and in vivo experiments were conducted to assess the effects of circSDHC on RCC proliferation and metastasis. RNA pull-down assay, luciferase reporter and fluorescent in situ hybridization assays were used to confirm the interactions between circSDHC, miR-127-3p and its target genes. Results Clinically, high circSDHC expression was correlated with advanced TNM stage and poor survival in patients with RCC. Further, circSDHC promoted tumor cell proliferation and invasion, both in vivo and in vitro. Analysis of the mechanism underlying the effects of circSDHC in RCC demonstrated that it binds competitively to miR-127-3p and prevents its suppression of a downstream gene, CDKN3, and the E2F1 pathway, thereby leading to RCC malignant progression. Furthermore, knockdown of circSDHC caused decreased CDKN3 expression and E2F1 pathway inhibition, which could be rescued by treatment with an miR-127-3p inhibitor. Conclusion Our data indicates, for the first time, an essential role for the circSDHC/miR-127-3p/CDKN3/E2F1 axis in RCC progression. Thus, circSDHC has potential to be a new therapeutic target in patients with RCC.


Sign in / Sign up

Export Citation Format

Share Document