scholarly journals Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions

2021 ◽  
Vol 118 (22) ◽  
pp. e2025435118
Author(s):  
Katie L. Barott ◽  
Ariana S. Huffmyer ◽  
Jennifer M. Davidson ◽  
Elizabeth A. Lenz ◽  
Shayle B. Matsuda ◽  
...  

Urgent action is needed to prevent the demise of coral reefs as the climate crisis leads to an increasingly warmer and more acidic ocean. Propagating climate change–resistant corals to restore degraded reefs is one promising strategy; however, empirical evidence is needed to determine whether stress resistance is affected by transplantation beyond a coral’s native reef. Here, we assessed the performance of bleaching-resistant individuals of two coral species following reciprocal transplantation between reefs with distinct pH, salinity, dissolved oxygen, sedimentation, and flow dynamics to determine whether heat stress response is altered following coral exposure to novel physicochemical conditions in situ. Critically, transplantation had no influence on coral heat stress responses, indicating that this trait was relatively fixed. In contrast, growth was highly plastic, and native performance was not predictive of performance in the novel environment. Coral metabolic rates and overall fitness were higher at the reef with higher flow, salinity, sedimentation, and diel fluctuations of pH and dissolved oxygen, and did not differ between native and cross-transplanted corals, indicating acclimatization via plasticity within just 3 mo. Conversely, cross-transplants at the second reef had higher fitness than native corals, thus increasing the fitness potential of the recipient population. This experiment was conducted during a nonbleaching year, so the potential benefits to recipient population fitness are likely enhanced during bleaching years. In summary, this study demonstrates that outplanting bleaching-resistant corals is a promising tool for elevating the resistance of coral populations to ocean warming.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1733
Author(s):  
Ho Viet Khoa ◽  
Puja Kumari ◽  
Hiroko Uchida ◽  
Akio Murakami ◽  
Satoshi Shimada ◽  
...  

The red alga ‘Bangia’ sp. ESS1, a ‘Bangia’ 2 clade member, responds to heat stress via accelerated asexual reproduction and acquires thermotolerance based on heat-stress memory. However, whether these strategies are specific to ‘Bangia’ 2, especially ‘Bangia’ sp. ESS1, or whether they are employed by all ‘Bangia’ species is currently unknown. Here, we examined the heat-stress responses of ‘Bangia’ sp. ESS2, a newly identified ‘Bangia’ clade 3 member, and Bangia atropurpurea. Intrinsic thermotolerance differed among species: Whereas ‘Bangia’ sp. ESS1 survived at 30 °C for 7 days, ‘Bangia’ sp. ESS2 and B. atropurpurea did not, with B. atropurpurea showing the highest heat sensitivity. Under sublethal heat stress, the release of asexual spores was highly repressed in ‘Bangia’ sp. ESS2 and completely repressed in B. atropurpurea, whereas it was enhanced in ‘Bangia’ sp. ESS1. ‘Bangia’ sp. ESS2 failed to acquire heat-stress tolerance under sublethal heat-stress conditions, whereas the acquisition of heat tolerance by priming with sublethal high temperatures was observed in both B. atropurpurea and ‘Bangia’ sp. ESS1. Finally, unlike ‘Bangia’ sp. ESS1, neither ‘Bangia’ sp. ESS2 nor B. atropurpurea acquired heat-stress memory. These findings provide insights into the diverse heat-stress response strategies among species from different clades of ‘Bangia’.


2021 ◽  
Vol 30 (3) ◽  
pp. 315-324
Author(s):  
M Bakony ◽  
G Kiss ◽  
L Kovács ◽  
V Jurkovich

Heat stress reduction in hutch-reared dairy calves is overlooked on most dairy farms. We hypothesised that during summer, the microclimate within hutches is directly affected by compass direction as a result of differences in exposure to solar radiation. On a bright, midAugust day a number of behavioural and physiological heat stress response measures (respiratory rate, body posture, being in the shade or sun) were recorded in 20-min intervals from 0720–1900h on calves housed in hutches with entrances facing all four points of the compass. In conjunction with this, dry bulb (ambient) and black globe temperatures, and wind speed were recorded both inside the plastic hutches and at one sunny site at the exterior. Data were compared in terms of distinct periods of the day (0720–1100, 1120– 1500, 1520–1900h). Dry bulb temperatures were higher inside hutches compared to outside while for black globe temperatures the opposite was true. Daily average temperatures and respiratory rates did not differ between hutches facing different compass points. In the morning and afternoon, hutch temperature and calf respiratory rate differed relative to compass point. Calves in east- and northfacing hutches were seen more in the shade than those in south- and west-facing ones. Our conclusion was that in a continental region having hutch entrances face towards the east or north confers some advantages in mitigating severe solar heat load in summer.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 746
Author(s):  
Pierre Jacob ◽  
Gwilherm Brisou ◽  
Marion Dalmais ◽  
Johanne Thévenin ◽  
Froukje van der Wal ◽  
...  

HEAT SHOCK FACTOR A2 (HSFA2) is a regulator of multiple environmental stress responses required for stress acclimation. We analyzed HSFA2 co-regulated genes and identified 43 genes strongly co-regulated with HSFA2 during multiple stresses. Motif enrichment analysis revealed an over-representation of the site II element (SIIE) in the promoters of these genes. In a yeast 1-hybrid screen with the SIIE, we identified the closely related R2R3-MYB transcription factors TT2 and MYB5. We found overexpression of MYB5 or TT2 rendered plants heat stress tolerant. In contrast, tt2, myb5, and tt2/myb5 loss of function mutants showed heat stress hypersensitivity. Transient expression assays confirmed that MYB5 and TT2 can regulate the HSFA2 promoter together with the other members of the MBW complex, TT8 and TRANSPARENT TESTA GLABRA 1 (TTG1) and that the SIIE was involved in this regulation. Transcriptomic analysis revealed that TT2/MYB5 target promoters were enriched in SIIE. Overall, we report a new function of TT2 and MYB5 in stress resistance and a role in SIIE-mediated HSFA2 regulation.


2021 ◽  
Author(s):  
Maximiliano Estravis-Barcala ◽  
Katrin Heer ◽  
Paula Marchelli ◽  
Birgit Ziegenhagen ◽  
María Verónica Arana ◽  
...  

AbstractGlobal warming is predicted to exert negative impacts on plant growth due to the damaging effect of high temperatures on plant physiology. Revealing the genetic architecture underlying the heat stress response is therefore crucial for the development of conservation strategies, and for breeding heat-resistant plant genotypes. Here we investigated the transcriptional changes induced by heat in Nothofagus pumilio, an emblematic tree species of the sub-Antarctic forests of South America. Through the performance of RNA-seq of leaves of plants exposed to 20°C (control) or 34°C (heat shock), we generated the first transcriptomic resource for the species. We also studied the changes in protein-coding transcripts expression in response to heat. We found 5,214 contigs differentially expressed between temperatures. The heat treatment resulted in a down-regulation of genes related to photosynthesis and carbon metabolism, whereas secondary metabolism, protein re-folding and response to stress were up-regulated. Moreover, several transcription factor families like WRKY or ERF were promoted by heat, alongside spliceosome machinery and hormone signaling pathways. Through a comparative analysis of gene regulation in response to heat in Arabidopsis thaliana, Populus tomentosa and N. pumilio we provide evidence of the existence of shared molecular features of heat stress responses across angiosperms, and identify genes of potential biotechnological application.


Author(s):  
Ye Ren ◽  
Zhouquan Huang ◽  
Hao Jiang ◽  
Zhuo Wang ◽  
Fengsheng Wu ◽  
...  

Abstract High temperature often leads to the failure of grain filling in rice (Oryza sativa) to cause yield loss, while the mechanism is not well elucidated yet. Here, we report that two seed-specific NAM/ATAF/CUC domain transcription factors, ONAC127 and ONAC129, are responsive to heat stress and involved in the grain filling process of rice. ONAC127 and ONAC129 are dominantly expressed in the pericarp and can form a heterodimer during rice grain filling. CRISPR/Cas9 induced mutants and overexpression lines were then generated to investigate the functions of these two transcription factors. Interestingly, both knock-out and overexpression plants showed incomplete grain filling and shrunken grains, which became more severe under heat stress. Transcriptome analysis revealed that ONAC127 and ONAC129 mainly regulate stimulus response and nutrient transport. ChIP-seq analysis identified that the direct targets of ONAC127 and ONAC129 in developing rice seeds include monosaccharide transporter OsMST6, sugar transporter OsSWEET4, calmodulin-like protein OsMSR2 and AP2/ERF factor OsEATB. These results suggest that ONAC127 and ONAC129 may regulate grain filling through affecting sugar transportation and abiotic stress responses. Overall, this study demonstrates a transcriptional regulatory network involving ONAC127 and ONAC129 and coordinating multiple pathways to modulate seed development and heat stress response at rice reproductive stage.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Camilla Nehammer ◽  
Agnieszka Podolska ◽  
Sebastian D. Mackowiak ◽  
Konstantinos Kagias ◽  
Roger Pocock

Abstract The ability of animals to sense and respond to elevated temperature is essential for survival. Transcriptional control of the heat stress response has been much studied, whereas its posttranscriptional regulation by microRNAs (miRNAs) is not well understood. Here we analyzed the miRNA response to heat stress in Caenorhabditis elegans and show that a discrete subset of miRNAs is thermoregulated. Using in-depth phenotypic analyses of miRNA deletion mutant strains we reveal multiple developmental and post-developmental survival and behavioral functions for specific miRNAs during heat stress. We have identified additional functions for already known players (mir-71 and mir-239) as well as identifying mir-80 and the mir-229 mir-64-66 cluster as important regulators of the heat stress response in C. elegans. These findings uncover an additional layer of complexity to the regulation of stress signaling that enables animals to robustly respond to the changing environment.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Juan Gao ◽  
Mei-Jing Wang ◽  
Jing-Jing Wang ◽  
Hai-Ping Lu ◽  
Jian-Xiang Liu

AbstractHigh temperature elicits a well-conserved response called the unfolded protein response (UPR) to bring protein homeostasis in the endoplasmic reticulum (ER). Two key UPR regulators bZIP28 and bZIP60 have been shown to be essential for maintaining fertility under heat stress conditions in Arabidopsis, however, the function of transcriptional activator bZIP17, a paralog of bZIP28, in heat stress response at reproductive stage is not reported. Here we found that bzip17 mutant plants were sensitive to heat stress in terms of silique length and fertility comparing to that of wildtype (WT) Arabidopsis plants, and transcriptomic analysis showed that 1380 genes were specifically up-regulated and 493 genes were specifically down-regulated by heat stress in the flowers of WT plants comparing to that in bzip17 mutant plants. These bZIP17-dependent up-regulated genes were enriched in responses to abiotic stresses such as water deprivation and salt stress. Further chromatin immuno-precipitation coupled with high-throughput sequencing (ChIP-Seq) uncovered 1645 genes that were direct targets of bZIP17 in MYC-bZIP17 expressing seedlings subjected to heat stress. Among these 1645 genes, ERSE-II cis-element was enriched in the binding peaks of their promoters, and the up-regulation of 113 genes by heat stress in flowers was dependent on bZIP17. Our results revealed direct targets of bZIP17 in flowers during heat stress responses and demonstrated the important role of bZIP17 in maintaining fertility upon heat stress in plants.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 395 ◽  
Author(s):  
Yaokun Li ◽  
Lingxuan Kong ◽  
Ming Deng ◽  
Zhiquan Lian ◽  
Yinru Han ◽  
...  

Heat stress has a severe effect on animal health and can reduce the productivity and reproductive efficiency; it is therefore necessary to explore the molecular mechanism involved in heat stress response, which is helpful for the cultivation of an animal breed with resistance to heat stress. However, little research about heat stress-responsive molecular analysis has been reported in sheep. Therefore, in this study, RNA sequencing (RNA-Seq) was used to investigate the transcriptome profiling in the liver of Hu sheep with and without heat stress. In total, we detected 520 and 22 differentially expressed mRNAs and lncRNAs, respectively. The differentially expressed mRNAs were mainly associated with metabolic processes, the regulation of biosynthetic processes, and the regulation of glucocorticoid; additionally, they were significantly enriched in the heat stress related pathways, including the carbon metabolism, the PPAR signaling pathway, and vitamin digestion and absorption. The co-located differentially expressed lncRNA Lnc_001782 might positively influence the expression of the corresponding genes APOA4 and APOA5, exerting co-regulative effects on the liver function. Thus, we made the hypothesis that Lnc_001782, APOA4 and APOA5 might function synergistically to regulate the anti-heat stress ability in Hu sheep. This study provides a catalog of Hu sheep liver mRNAs and lncRNAs, and will contribute to a better understanding of the molecular mechanism underlying heat stress responses.


2021 ◽  
Vol 22 (2) ◽  
pp. 948
Author(s):  
Zhaoxia Li ◽  
Stephen H. Howell

High temperatures causing heat stress disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress, often in combination with other stresses. Plants have evolved a variety of responses to heat stress to minimize damage and to protect themselves from further stress. A narrow temperature window separates growth from heat stress, and the range of temperatures conferring optimal growth often overlap with those producing heat stress. Heat stress induces a cytoplasmic heat stress response (HSR) in which heat shock transcription factors (HSFs) activate a constellation of genes encoding heat shock proteins (HSPs). Heat stress also induces the endoplasmic reticulum (ER)-localized unfolded protein response (UPR), which activates transcription factors that upregulate a different family of stress response genes. Heat stress also activates hormone responses and alternative RNA splicing, all of which may contribute to thermotolerance. Heat stress is often studied by subjecting plants to step increases in temperatures; however, more recent studies have demonstrated that heat shock responses occur under simulated field conditions in which temperatures are slowly ramped up to more moderate temperatures. Heat stress responses, assessed at a molecular level, could be used as traits for plant breeders to select for thermotolerance.


2020 ◽  
Vol 71 (6) ◽  
pp. 1782-1791 ◽  
Author(s):  
Fabiola Jaimes-Miranda ◽  
Ricardo A Chávez Montes

Abstract The Multiprotein Bridging Factor 1 (MBF1) proteins are transcription co-factors whose molecular function is to form a bridge between transcription factors and the basal machinery of transcription. MBF1s are present in most archaea and all eukaryotes, and numerous reports show that they are involved in developmental processes and in stress responses. In this review we summarize almost three decades of research on the plant MBF1 family, which has mainly focused on their role in abiotic stress responses, in particular the heat stress response. However, despite the amount of information available, there are still many questions that remain about how plant MBF1 genes, transcripts, and proteins respond to stress, and how they in turn modulate stress response transcriptional pathways.


Sign in / Sign up

Export Citation Format

Share Document