Tetramerization of STAT5 promotes autoimmune-mediated neuroinflammation

2021 ◽  
Vol 118 (52) ◽  
pp. e2116256118
Author(s):  
Kelly L. Monaghan ◽  
Drake Aesoph ◽  
Amanda G. Ammer ◽  
Wen Zheng ◽  
Shokofeh Rahimpour ◽  
...  

Signal tranducer and activator of transcription 5 (STAT5) plays a critical role in mediating cellular responses following cytokine stimulation. STAT proteins critically signal via the formation of dimers, but additionally, STAT tetramers serve key biological roles, and we previously reported their importance in T and natural killer (NK) cell biology. However, the role of STAT5 tetramerization in autoimmune-mediated neuroinflammation has not been investigated. Using the STAT5 tetramer-deficient Stat5a-Stat5b N-domain double knockin (DKI) mouse strain, we report here that STAT5 tetramers promote the pathogenesis of experimental autoimmune encephalomyelitis (EAE). The mild EAE phenotype observed in DKI mice correlates with the impaired extravasation of pathogenic T-helper 17 (Th17) cells and interactions between Th17 cells and monocyte-derived cells (MDCs) in the meninges. We further demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF)–mediated STAT5 tetramerization regulates the production of CCL17 by MDCs. Importantly, CCL17 can partially restore the pathogenicity of DKI Th17 cells, and this is dependent on the activity of the integrin VLA-4. Thus, our study reveals a GM-CSF-STAT5 tetramer-CCL17 pathway in MDCs that promotes autoimmune neuroinflammation.

2021 ◽  
Vol 118 (50) ◽  
pp. e2109972118
Author(s):  
Muhammad S. Alam ◽  
Shizuka Otsuka ◽  
Nathan Wong ◽  
Aamna Abbasi ◽  
Matthias M. Gaida ◽  
...  

TNF, produced largely by T and innate immune cells, is potently proinflammatory, as are cytokines such as IFN-γ and IL-17 produced by Th1 and Th17 cells, respectively. Here, we asked if TNF is upstream of Th skewing toward inflammatory phenotypes. Exposure of mouse CD4+ T cells to TNF and TGF-β generated Th17 cells that express low levels of IL-17 (ROR-γt+IL-17lo) and high levels of inflammatory markers independently of IL-6 and STAT3. This was mediated by the nondeath TNF receptor TNFR2, which also contributed to the generation of inflammatory Th1 cells. Single-cell RNA sequencing of central nervous system–infiltrating CD4+ T cells in mouse experimental autoimmune encephalomyelitis (EAE) found an inflammatory gene expression profile similar to cerebrospinal fluid–infiltrating CD4+ T cells from patients with multiple sclerosis. Notably, TNFR2-deficient CD4+ T cells produced fewer inflammatory mediators and were less pathogenic in EAE and colitis. IL-1β, a Th17-skewing cytokine, induced TNF and proinflammatory granulocyte-macrophage colony-stimulating factor (GM-CSF) in T cells, which was inhibited by disruption of TNFR2 signaling, demonstrating IL-1β can function indirectly via the production of TNF. Thus, TNF is not just an effector but also an initiator of inflammatory Th differentiation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hideaki Hasegawa ◽  
Izuru Mizoguchi ◽  
Naoko Orii ◽  
Shinya Inoue ◽  
Yasuhiro Katahira ◽  
...  

AbstractAmong various cytokines, interleukin (IL)-12 family cytokines have very unique characteristics in that they are composed of two distinct subunits and these subunits are shared with each other. IL-23, one of the IL-12 family cytokines, consists of p19 and p40 subunits, is mainly produced by antigen-presenting cells, and plays a critical role in the expansion and maintenance of pathogenic helper CD4+ T (Th)17 cells. Since we initially found that p19 is secreted in the culture supernatant of activated CD4+ T cells, we have further investigated the role of p19. p19 was revealed to associate with CD5 antigen-like (CD5L), which is a repressor of Th17 pathogenicity and is highly expressed in non-pathogenic Th17 cells, to form a composite p19/CD5L. This p19/CD5L was shown to activate STAT5 and enhance the differentiation into granulocyte macrophage colony-stimulating factor (GM-CSF)-producing CD4+ T cells. Both CD4+ T cell-specific conditional p19-deficient mice and complete CD5L-deficient mice showed significantly alleviated experimental autoimmune encephalomyelitis (EAE) with reduced frequency of GM-CSF+CD4+ T cells. During the course of EAE, the serum level of p19/CD5L, but not CD5L, correlated highly with the clinical symptoms. Thus, the composite p19/CD5L is a possible novel heterodimeric cytokine that contributes to EAE development with GM-CSF up-regulation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sizhe Liu ◽  
Vasiliy Galat ◽  
Yekaterina Galat4 ◽  
Yoo Kyung Annie Lee ◽  
Derek Wainwright ◽  
...  

AbstractNatural killer (NK) cell is a specialized immune effector cell type that plays a critical role in immune activation against abnormal cells. Different from events required for T cell activation, NK cell activation is governed by the interaction of NK receptors with target cells, independent of antigen processing and presentation. Due to relatively unsophisticated cues for activation, NK cell has gained significant attention in the field of cancer immunotherapy. Many efforts are emerging for developing and engineering NK cell-based cancer immunotherapy. In this review, we provide our current understandings of NK cell biology, ongoing pre-clinical and clinical development of NK cell-based therapies and discuss the progress, challenges, and future perspectives.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ning Qu ◽  
Mingli Xu ◽  
Izuru Mizoguchi ◽  
Jun-ichi Furusawa ◽  
Kotaro Kaneko ◽  
...  

T-helper 17 (Th17) cells are characterized by producing interleukin-17 (IL-17, also called IL-17A), IL-17F, IL-21, and IL-22 and potentially TNF-α and IL-6 upon certain stimulation. IL-23, which promotes Th17 cell development, as well as IL-17 and IL-22 produced by the Th17 cells plays essential roles in various inflammatory diseases, such as experimental autoimmune encephalomyelitis, rheumatoid arthritis, colitis, and Concanavalin A-induced hepatitis. In this review, we summarize the characteristics of the functional role of Th17 cells, with particular focus on the Th17 cell-related cytokines such as IL-17, IL-22, and IL-23, in mouse models and human inflammatory diseases.


Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1768-1776 ◽  
Author(s):  
Gerald M. Feldman ◽  
Louis A. Rosenthal ◽  
Xiuwen Liu ◽  
Mark P. Hayes ◽  
Anthony Wynshaw-Boris ◽  
...  

Abstract Responses of cells to cytokines typically involve the activation of a family of latent DNA binding proteins, referred to as signal transducers and activators of transcription (STAT) proteins, which are critical for the expression of early response genes. Of the seven known STAT proteins, STAT5 (originally called mammary gland factor) has been shown to be activated by several cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5, which are known to play important roles in growth and differentiation of hematopoietic precursors. In this report we have used mice that are deficient in STAT5A (one of two homologues of STAT5) to study the role of STAT5A in GM-CSF stimulation of cells. When bone marrow–derived macrophages were generated by differentiation with macrophage-CSF (M-CSF), exposure of cells from wild-type mice to GM-CSF resulted in a typical pattern of assembly of DNA binding proteins specific for the gamma activation sequence (GAS) element within the β-casein promoter. However, in cells from the STAT5A null mouse one of the shifted bands was absent. Immunoblotting analysis in the null mice showed that lack of STAT5A protein resulted in no alteration in activation of STAT5B by tyrosine phosphorylation. Proliferation experiments revealed that, when exposed to increasing concentrations of GM-CSF, cells derived from the null mice grew considerably more slowly than cells derived from the wild-type mice. Moreover, expression of GM-CSF–dependent genes, CIS and A1, was markedly inhibited in cells derived from null mice as compared with those of wild-type mice. The decreased expression observed with A1, a bcl-2 like gene, may account in part for the suppression of growth in cells from the null mice. These data suggest that the presence of STAT5A during the GM-CSF–induced assembly of STAT5 dimers is critical for the formation of competent transcription factors that are required for both gene expression and cell proliferation.


Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 1980-1991 ◽  
Author(s):  
Sampsa Matikainen ◽  
Timo Sareneva ◽  
Tapani Ronni ◽  
Anne Lehtonen ◽  
Päivi J. Koskinen ◽  
...  

Interferon- (IFN-) is a pleiotropic cytokine that has antiviral, antiproliferative, and immunoregulatory functions. There is increasing evidence that IFN- has an important role in T-cell biology. We have analyzed the expression ofIL-2R, c-myc, and pim-1 genes in anti-CD3–activated human T lymphocytes. The induction of these genes is associated with interleukin-2 (IL-2)–induced T-cell proliferation. Treatment of T lymphocytes with IFN-, IL-2, IL-12, and IL-15 upregulated IL-2R, c-myc, andpim-1 gene expression. IFN- also sensitized T cells to IL-2–induced proliferation, further suggesting that IFN- may be involved in the regulation of T-cell mitogenesis. When we analyzed the nature of STAT proteins capable of binding to IL-2R,pim-1, and IRF-1 GAS elements after cytokine stimulation, we observed IFN-–induced binding of STAT1, STAT3, and STAT4, but not STAT5 to all of these elements. Yet, IFN- was able to activate binding of STAT5 to the high-affinity IFP53 GAS site. IFN- enhanced tyrosine phosphorylation of STAT1, STAT3, STAT4, STAT5a, and STAT5b. IL-12 induced STAT4 and IL-2 and IL-15 induced STAT5 binding to the GAS elements. Taken together, our results suggest that IFN-, IL-2, IL-12, and IL-15 have overlapping activities on human T cells. These findings thus emphasize the importance of IFN- as a T-cell regulatory cytokine.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3573
Author(s):  
Seo-Yeon Kim ◽  
Ji-Sun Shin ◽  
Kyung-Sook Chung ◽  
Hee-Soo Han ◽  
Hwi-Ho Lee ◽  
...  

Our previous studies have shown that heat-killed Lactobacillus sakei K040706 exerts immunostimulatory and anti-inflammatory activities in macrophages, cyclophosphamide (CYP)-treated mice, and dextran sulfate sodium–induced colitis mice. However, the immunostimulatory effects of live Lactobacillus sakei K040706 (live K040706) against CYP-induced immunosuppression and its underlying molecular mechanisms remain unknown. Therefore, we investigated the immunostimulatory effects of live K040706 (108 or 109 colony forming unit (CFU)/day, p.o.) in CYP-induced immunosuppressed mice. Oral administration of live K040706 prevented the CYP-induced decreases in body weight, thymus index, natural killer (NK) cell activity, T and B cell proliferation, and cytokine (interferon (IFN)-γ, interleukin (IL)-2, and IL-12) production. The administration of live K040706 also exerted positive effects on the gut microbiota of CYP-induced mice, resulting in a microbiota composition similar to that of normal mice. Moreover, live K040706 significantly enhanced IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in the splenocytes and Peyer’s patch (PP) cells of mice and increased bone marrow (BM) cell proliferation. Taken together, our data indicate that live K040706 may effectively accelerate recovery from CYP-induced immunosuppression, leading to activation of the immune system. Therefore, live K040706 may serve as a potential immunomodulatory agent against immunosuppression.


2010 ◽  
Vol 426 (3) ◽  
pp. 307-317 ◽  
Author(s):  
Shamaruh Mirza ◽  
Andrew Walker ◽  
Jinglong Chen ◽  
James M. Murphy ◽  
Ian G. Young

GM-CSF (granulocyte/macrophage colony-stimulating factor) is an important mediator of inducible haemopoiesis and inflammation, and has a critical role in the function of alveolar macrophages. Its clinical applications include the mobilization of haemopoietic progenitors, and a role as an immune stimulant and vaccine adjuvant in cancer patients. GM-CSF signals via a specific α receptor (GM-CSFRα) and the shared hβc (human common β-subunit). The present study has investigated the role of the Ig-like domain of GM-CSFRα in GM-CSF binding and signalling. Deletion of the Ig-like domain abolished direct GM-CSF binding and decreased growth signalling in the presence of hβc. To locate the specific residues in the Ig-like domain of GM-CSFRα involved in GM-CSF binding, a structural alignment was made with a related receptor, IL-13Rα1 (interleukin-13 receptor α1), whose structure and mode of interaction with its ligand has recently been elucidated. Mutagenesis of candidate residues in the predicted region of interaction identified Val51 and Cys60 as having critical roles in binding to the α receptor, with Arg54 and Leu55 also being important. High-affinity binding in the presence of hβc was strongly affected by mutation of Cys60 and was also reduced by mutation of Val51, Arg54 and Leu55. Of the four key residues, growth signalling was most severely affected by mutation of Cys60. The results indicate a previously unrecognized role for the Ig-like domain, and in particular Cys60, of GM-CSFRα in the binding of GM-CSF and subsequent activation of cellular signalling.


2019 ◽  
Author(s):  
Shenchao Guo ◽  
Houfa Yin ◽  
Mingjie Zheng ◽  
Yizhen Tang ◽  
Bing Lu ◽  
...  

Abstract Background To investigate serum cytokine profiles in patients with idiopathic choroidal neovascularization (ICNV) and explore the relationship between serum cytokine levels and ICNV severity. Methods This case-control study was conducted in 32 ICNV patients and 30 healthy volunteers. Clinical and demographic information was obtained from the medical data platform and the serum was analysed with a multiplex assay to determine the levels of seven cytokines: interleukin (IL)-2, IL-10, IL-15, IL-17, basic fibroblast growth factor (basic FGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and vascular endothelial growth factor (VEGF). Results Serum levels of IL-2, IL-10, IL-17, basic FGF, and VEGF were elevated in ICNV patients compared to controls. Serum GM-CSF levels were positively related to central retinal thickness, and serum IL-17 levels were positively related to CNV lesion area. Conclusion Serum inflammatory cytokines were significantly elevated in ICNV patients compared to controls. This suggests that systemic inflammation may play a critical role in the physiopathology of ICNV.


2019 ◽  
Vol 20 (4) ◽  
pp. 834 ◽  
Author(s):  
Francesco Borriello ◽  
Maria Galdiero ◽  
Gilda Varricchi ◽  
Stefania Loffredo ◽  
Giuseppe Spadaro ◽  
...  

Granulocyte-macrophage colony-stimulating factor (GM-CSF) and inteleukin-3 (IL-3) have long been known as mediators of emergency myelopoiesis, but recent evidence has highlighted their critical role in modulating innate immune effector functions in mice and humans. This new wealth of knowledge has uncovered novel aspects of the pathogenesis of a range of disorders, including infectious, neoplastic, autoimmune, allergic and cardiovascular diseases. Consequently, GM-CSF and IL-3 are now being investigated as therapeutic targets for some of these disorders, and some phase I/II clinical trials are already showing promising results. There is also pre-clinical and clinical evidence that GM-CSF can be an effective immunostimulatory agent when being combined with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) in patients with metastatic melanoma as well as in novel cancer immunotherapy approaches. Finally, GM-CSF and to a lesser extent IL-3 play a critical role in experimental models of trained immunity by acting not only on bone marrow precursors but also directly on mature myeloid cells. Altogether, characterizing GM-CSF and IL-3 as central mediators of innate immune activation is poised to open new therapeutic avenues for several immune-mediated disorders and define their potential in the context of immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document