scholarly journals Unrestrained Mammalian Target of Rapamycin Complexes 1 and 2 Increase Expression of Phosphatase and Tensin Homolog Deleted on Chromosome 10 to Regulate Phosphorylation of Akt Kinase

2011 ◽  
Vol 287 (6) ◽  
pp. 3808-3822 ◽  
Author(s):  
Falguni Das ◽  
Nandini Ghosh-Choudhury ◽  
Nirmalya Dey ◽  
Chandi Charan Mandal ◽  
Lenin Mahimainathan ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4560-4568 ◽  
Author(s):  
Bao Hoang ◽  
Patrick Frost ◽  
Yijiang Shi ◽  
Eileen Belanger ◽  
Angelica Benavides ◽  
...  

Although preclinical work with rapalogs suggests potential in treatment of multiple myeloma (MM), they have been less successful clinically. These drugs allostearically inhibit the mammalian target of rapamycin kinase primarily curtailing activity of the target of rapamycin complex (TORC)1. To assess if the mammalian target of rapamycin within the TORC2 complex could be a better target in MM, we tested a new agent, pp242, which prevents activation of TORC2 as well as TORC1. Although comparable to rapamycin against phosphorylation of the TORC1 substrates p70S6kinase and 4E-BP-1, pp242 could also inhibit phosphorylation of AKT on serine 473, a TORC2 substrate, while rapamycin was ineffective. pp242 was also more effective than rapamycin in achieving cytoreduction and apoptosis in MM cells. In addition, pp242 was an effective agent against primary MM cells in vitro and growth of 8226 cells in mice. Knockdown of the TORC2 complex protein, rictor, was deleterious to MM cells further supporting TORC2 as the critical target for pp242. TORC2 activation was frequently identified in primary specimens by immunostaining for AKT phosphorylation on serine 473. Potential mechanisms of up-regulated TORC2 activity in MM were stimulation with interleukin-6 or insulin-like growth factor 1, and phosphatase and tensin homolog or RAS alterations. Combining pp242 with bortezomib led to synergistic anti-MM effects. These results support TORC2 as a therapeutic target in MM.


Author(s):  
Annu Makker ◽  
Madhu Mati Goel ◽  
Kumari Manu ◽  
Renu Makker

Background: Balance between endometrial cell proliferation and apoptosis is crucial for successful embryo implantation. PTEN (phosphatase and tensin homolog deleted on chromosome 10), a pro-apoptotic factor, is proposed to be one of the signaling proteins through which estrogen and progesterone act to affect cellular homeostasis. Although reports in literature have suggested role of PTEN in regulating endometrial cell proliferation and apoptosis during window of implantation, its involvement in women with unexplained infertility is not clear. In the present study, we examined expression, cellular distribution and activation status of PTEN, cell proliferation, and apoptosis in midsecretory endometrium from women with unexplained infertility as compared to fertile controls.Methods: Endometrial biopsies from infertile (n=11) and fertile women (n=22) were used for immunohistochemical evaluation of PTEN, phospho-PTEN and Ki67. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay was performed for detection of apoptotic cells.Results: Biopsies from infertile women as compared to fertile controls demonstrated statistically significant: i) decrease in nuclear PTEN (P < 0.001), increase in nuclear phospho-PTEN (P < 0.05), increase in nuclear and cytoplasmic phospho-PTEN/PTEN ratio (P < 0.001 and P < 0.05 respectively) in endometrial stroma, ii) increase in cytoplasmic phospho-PTEN (P < 0.001) and phospho-PTEN/PTEN ratio (P < 0.05) in glandular epithelium (GE), iii) increase in Ki67 labeling in GE (P < 0.01) and stroma (P < 0.05) and, iv) decrease in (P < 0.001) apoptosis.Conclusions: Altered PTEN expression and associated modulation in cellular homeostasis during the implantation window might contribute to mechanism underlying unexplained infertility.


2010 ◽  
Vol 28 (36) ◽  
pp. e767-e768 ◽  
Author(s):  
Mrinal M. Patnaik ◽  
Sania S. Raza ◽  
Sherezade Khambatta ◽  
Peter P. Stanich ◽  
Matthew P. Goetz

Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 177 ◽  
Author(s):  
Isabel Gugel ◽  
Florian H. Ebner ◽  
Florian Grimm ◽  
Stefan Czemmel ◽  
Frank Paulsen ◽  
...  

The use of radiation treatment has increased for both sporadic and neurofibromatosis type 2 (NF2)-associated vestibular schwannoma (VS). However, there are a subset of radioresistant tumors and systemic treatments that are seldom used in these patients. We investigated molecular alterations after radiation in three NF2-associated and five sporadically operated recurrent VS after primary irradiation. We compared these findings with 49 non-irradiated (36 sporadic and 13 NF2-associated) VS through gene-expression profiling and pathway analysis. Furthermore, we stained the key molecules of the distinct pathway by immunohistochemistry. A total of 195 differentially expressed genes in sporadic and NF2-related comparisons showed significant differences based on the criteria of p value < 0.05 and a two-fold change. These genes were involved in pathways that are known to be altered upon irradiation (e.g., mammalian target of rapamycin (mTOR), phosphatase and tensin homolog (PTEN) and vascular endothelial growth factor (VEGF) signaling). We observed a combined downregulation of PTEN signaling and an upregulation of mTOR signaling in progressive NF2-associated VS after irradiation. Immunostainings with mTOR and PTEN antibodies confirmed the respective molecular alterations. Taken together, mTOR inhibition might be a promising therapeutic strategy in NF2-associated VS progress after irradiation.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 719
Author(s):  
Nicola Fusco ◽  
Elham Sajjadi ◽  
Konstantinos Venetis ◽  
Gabriella Gaudioso ◽  
Gianluca Lopez ◽  
...  

Alterations in the tumor suppressor phosphatase and tensin homolog (PTEN) occur in a substantial proportion of solid tumors. These events drive tumorigenesis and tumor progression. Given its central role as a downregulator of the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, PTEN is deeply involved in cell growth, proliferation, and survival. This gene is also implicated in the modulation of the DNA damage response and in tumor immune microenvironment modeling. Despite the actionability of PTEN alterations, their role as biomarkers remains controversial in clinical practice. To date, there is still a substantial lack of validated guidelines and/or recommendations for PTEN testing. Here, we provide an update on the current state of knowledge on biologic and genetic alterations of PTEN across the most frequent solid tumors, as well as on their actual and/or possible clinical applications. We focus on possible tailored schemes for cancer patients’ clinical management, including risk assessment, diagnosis, prognostication, and treatment.


Sign in / Sign up

Export Citation Format

Share Document