scholarly journals CORO7 functions as a scaffold protein for the core kinase complex assembly of the Hippo pathway

2020 ◽  
pp. jbc.RA120.013297
Author(s):  
Jina Park ◽  
Kyoungho Jun ◽  
Yujin Choi ◽  
Eunju Yoon ◽  
Wonho Kim ◽  
...  

The Hippo pathway controls organ size and tissue homeostasis through the regulation of cell proliferation and apoptosis. However, the exact molecular mechanisms underpinning Hippo pathway regulation is not fully understood. Here, we identify a new component of the Hippo pathway: CORO7, a coronin protein family member that is involved in organization of the actin cytoskeleton. pod1, the Drosophila orthologue of CORO7, genetically interacts with key Hippo pathway genes in Drosophila. In mammalian cells, CORO7 is required for the activation of the Hippo pathway in response to cell-cell contact, serum deprivation, and cytoskeleton damage. CORO7 forms a complex with the core components of the pathway and functions as a scaffold for the Hippo core kinase complex. Collectively, these results demonstrate that CORO7 is a key scaffold controlling the Hippo pathway via modulating protein-protein interactions.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2474-2474
Author(s):  
Eva Schmidt ◽  
Jana Krosl ◽  
Jalila Chagraoui ◽  
Nadine Mayotte ◽  
Caroline Pabst ◽  
...  

Abstract Abstract 2474 Aberrant expression of Hox genes and their cofactors Pbx and Meis1 has been detected in approximately 50% of all human leukemias, and proteins interacting with these homeodomain factors could play a major role in leukemia development. Studies in drosophila showed that hth/MEIS directly interacts with YKI, a component of the Hippo signaling pathway (Peng HW et al., 2009). The core components of this pathway in the mammalian cells are the kinases MST 1 or 2 and LATS 1 or 2, and the downstream transcription cofactors WWTR1 and YAP (homologues of the drosophila Yki). The Hippo pathway has been proposed to play a tumor suppressive role in carcinoma development (Lu L et al. 2010), but little is known about its function in hematopoiesis and leukemia. To address this issue, we first determined the expression levels of the core Hippo pathway constituents in different subpopulations of primitive hematopoietic cells by quantitative RT-PCR. Hematopoietic stem cells (HSC) isolated from day 14.5 fetal liver (FL-HSC, phenotype: CD150+CD48-Lin-), or bone marrow from 3 and 4 week old mice (BM-HSC, phenotype: cKit+CD150+CD48-Lin-) express comparable levels of Lats 1/2 and Mst 1/2. FL-HSC, however, express approximately 3 fold higher levels of Wwtr1 and Yap than the BM-HSC. Expression of all core components of the Hippo pathway was also detected in the Hoxa9+Meis1-induced leukemia named FLA2 in which approximately 70% of cells represent leukemia stem cells (LSC). The role of this pathway in leukemia was assessed using the shRNA-mediated loss of function approach. For each core component, 5 different shRNAs were designed, and 2 achieving ≥40% decrease in the targeted transcript levels were selected for the in vivo experiments. Freshly isolated FLA2 leukemia cells were infected with recombinant retroviruses carrying the control shLuciferase or the targeting shRNA, and green fluorescent protein (GFP), and were transplanted into sub-lethally irradiated recipient mice. The proportions of shRNA transduced (GFP+) cells were determined at the time of transplantation (day 0), and at the time of sacrifice (day 18 ± 2). During this period, the proportions of shWwtr1(GFP+) cells to the leukemic cell populations decreased to 10–20% of the initial day 0 values. Conversely, the Lats1 knockdown leads to > 50% increase over the initial proportion of the GFP+ cells. The combined Lats1+Lats2 knockdown enhanced the competitiveness of the transduced cells compared shLuciferase controls. These significant results (p < 0.05, Mann-Whitney-Test) suggest that LATS kinases act as negative regulators of leukemic cell expansion. To exclude the possibility that this effect is limited to FLA2 leukemia we isolated the CD150+CD48-Lin- stem/progenitor cells from FL, co-infected them first with Hoxa9 and Meis1 cDNA carrying retroviruses, and then knocked down Wwtr1 or Lats1. Similar to observations in FLA2 leukemia model, Lats 1 depletion promoted ∼2-fold increase, and Wwtr 1 reduction >80% decrease in proportions of the transduced (GFP+) cells compared to their initial day 0 levels. Together, our observations suggest that LATS kinases act as negative modulators of Hox/Meis-induced leukemia and indicate a possibility for a specific targeting of the Hox/Meis-activated cellular pathways. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 94 ◽  
Author(s):  
Zaid Taha ◽  
Helena Janse van Rensburg ◽  
Xiaolong Yang

Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.


2014 ◽  
Vol 42 (4) ◽  
pp. 816-821 ◽  
Author(s):  
David Romano ◽  
David Matallanas ◽  
Dennie T. Frederick ◽  
Keith T. Flaherty ◽  
Walter Kolch

The Hippo/MST2 (mammalian sterile 20-like kinase 2) pathway is a signalling cascade evolutionarily conserved in its structure. Originally described in Drosophila melanogaster as a regulator of organ size, this pathway has greater functions in mammals. Disturbance of mammalian MST2 pathway is associated with tumorigenesis by affecting apoptosis, cell cycle and polarity. In addition, this pathway has been shown to cross-talk with mitogenic pathways at multiple levels. In the present mini-review, we discuss our contribution highlighting the regulation of MST2 signalling by frequently observed oncogenic perturbations affecting mitogenic pathways. In particular, we review the role of RAS isoforms and PI3K (phosphoinositide 3-kinase)/Akt in the regulation of MST2 activity by phosphorylation. We also put the emphasis on RAF-induced control of MST2 signalling by protein–protein interactions. Finally, we recapitulate some of the direct mechanisms, such as ubiquitin-dependent degradation or gene silencing by promoter hypermethylation, involved in MST2 pathway component down-regulation in cancers.


2019 ◽  
Vol 88 (1) ◽  
pp. 577-604 ◽  
Author(s):  
Shenghong Ma ◽  
Zhipeng Meng ◽  
Rui Chen ◽  
Kun-Liang Guan

The Hippo pathway was initially discovered in Drosophila melanogaster as a key regulator of tissue growth. It is an evolutionarily conserved signaling cascade regulating numerous biological processes, including cell growth and fate decision, organ size control, and regeneration. The core of the Hippo pathway in mammals consists of a kinase cascade, MST1/2 and LATS1/2, as well as downstream effectors, transcriptional coactivators YAP and TAZ. These core components of the Hippo pathway control transcriptional programs involved in cell proliferation, survival, mobility, stemness, and differentiation. The Hippo pathway is tightly regulated by both intrinsic and extrinsic signals, such as mechanical force, cell–cell contact, polarity, energy status, stress, and many diffusible hormonal factors, the majority of which act through G protein–coupled receptors. Here, we review the current understanding of molecular mechanisms by which signals regulate the Hippo pathway with an emphasis on mechanotransduction and the effects of this pathway on basic biology and human diseases.


2011 ◽  
Vol 39 (1) ◽  
pp. 163-168 ◽  
Author(s):  
Stuart A. MacNeill

Most of the core components of the archaeal chromosomal DNA replication apparatus share significant protein sequence similarity with eukaryotic replication factors, making the Archaea an excellent model system for understanding the biology of chromosome replication in eukaryotes. The present review summarizes current knowledge of how the core components of the archaeal chromosome replication apparatus interact with one another to perform their essential functions.


2003 ◽  
Vol 16 (5) ◽  
pp. 577-577
Author(s):  
J. Tavernier ◽  
S. Eyckerman ◽  
I. Lemmens ◽  
S. Lievens ◽  
J. Vandekerckhove ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 611
Author(s):  
Kelly Coffey

Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ. Transcription by their partner transcription factors is inhibited by modulation of YAP/TAZ cellular localisation and protein turnover. Trnascriptional enhanced associate domain (TEAD) transcription factors are their classical transcriptional partner but other transcription factors, including the AR, have been shown to be modulated by YAP/TAZ. In PC, this pathway can be dysregulated by a number of mechanisms, making it attractive for therapeutic intervention. This review looks at each component of the pathway with a focus on findings from the last year and discusses what knowledge can be applied to the field of PC.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


Sign in / Sign up

Export Citation Format

Share Document