Structural and Biochemical Analyses of the Core Components of the Hippo Pathway

Author(s):  
Lisheng Ni ◽  
Xuelian Luo
2020 ◽  
pp. jbc.RA120.013297
Author(s):  
Jina Park ◽  
Kyoungho Jun ◽  
Yujin Choi ◽  
Eunju Yoon ◽  
Wonho Kim ◽  
...  

The Hippo pathway controls organ size and tissue homeostasis through the regulation of cell proliferation and apoptosis. However, the exact molecular mechanisms underpinning Hippo pathway regulation is not fully understood. Here, we identify a new component of the Hippo pathway: CORO7, a coronin protein family member that is involved in organization of the actin cytoskeleton. pod1, the Drosophila orthologue of CORO7, genetically interacts with key Hippo pathway genes in Drosophila. In mammalian cells, CORO7 is required for the activation of the Hippo pathway in response to cell-cell contact, serum deprivation, and cytoskeleton damage. CORO7 forms a complex with the core components of the pathway and functions as a scaffold for the Hippo core kinase complex. Collectively, these results demonstrate that CORO7 is a key scaffold controlling the Hippo pathway via modulating protein-protein interactions.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2474-2474
Author(s):  
Eva Schmidt ◽  
Jana Krosl ◽  
Jalila Chagraoui ◽  
Nadine Mayotte ◽  
Caroline Pabst ◽  
...  

Abstract Abstract 2474 Aberrant expression of Hox genes and their cofactors Pbx and Meis1 has been detected in approximately 50% of all human leukemias, and proteins interacting with these homeodomain factors could play a major role in leukemia development. Studies in drosophila showed that hth/MEIS directly interacts with YKI, a component of the Hippo signaling pathway (Peng HW et al., 2009). The core components of this pathway in the mammalian cells are the kinases MST 1 or 2 and LATS 1 or 2, and the downstream transcription cofactors WWTR1 and YAP (homologues of the drosophila Yki). The Hippo pathway has been proposed to play a tumor suppressive role in carcinoma development (Lu L et al. 2010), but little is known about its function in hematopoiesis and leukemia. To address this issue, we first determined the expression levels of the core Hippo pathway constituents in different subpopulations of primitive hematopoietic cells by quantitative RT-PCR. Hematopoietic stem cells (HSC) isolated from day 14.5 fetal liver (FL-HSC, phenotype: CD150+CD48-Lin-), or bone marrow from 3 and 4 week old mice (BM-HSC, phenotype: cKit+CD150+CD48-Lin-) express comparable levels of Lats 1/2 and Mst 1/2. FL-HSC, however, express approximately 3 fold higher levels of Wwtr1 and Yap than the BM-HSC. Expression of all core components of the Hippo pathway was also detected in the Hoxa9+Meis1-induced leukemia named FLA2 in which approximately 70% of cells represent leukemia stem cells (LSC). The role of this pathway in leukemia was assessed using the shRNA-mediated loss of function approach. For each core component, 5 different shRNAs were designed, and 2 achieving ≥40% decrease in the targeted transcript levels were selected for the in vivo experiments. Freshly isolated FLA2 leukemia cells were infected with recombinant retroviruses carrying the control shLuciferase or the targeting shRNA, and green fluorescent protein (GFP), and were transplanted into sub-lethally irradiated recipient mice. The proportions of shRNA transduced (GFP+) cells were determined at the time of transplantation (day 0), and at the time of sacrifice (day 18 ± 2). During this period, the proportions of shWwtr1(GFP+) cells to the leukemic cell populations decreased to 10–20% of the initial day 0 values. Conversely, the Lats1 knockdown leads to > 50% increase over the initial proportion of the GFP+ cells. The combined Lats1+Lats2 knockdown enhanced the competitiveness of the transduced cells compared shLuciferase controls. These significant results (p < 0.05, Mann-Whitney-Test) suggest that LATS kinases act as negative regulators of leukemic cell expansion. To exclude the possibility that this effect is limited to FLA2 leukemia we isolated the CD150+CD48-Lin- stem/progenitor cells from FL, co-infected them first with Hoxa9 and Meis1 cDNA carrying retroviruses, and then knocked down Wwtr1 or Lats1. Similar to observations in FLA2 leukemia model, Lats 1 depletion promoted ∼2-fold increase, and Wwtr 1 reduction >80% decrease in proportions of the transduced (GFP+) cells compared to their initial day 0 levels. Together, our observations suggest that LATS kinases act as negative modulators of Hox/Meis-induced leukemia and indicate a possibility for a specific targeting of the Hox/Meis-activated cellular pathways. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 422 ◽  
Author(s):  
Liqing Wu ◽  
Xiaolong Yang

Breast cancer (BC) is one of the most prominent diseases in the world, and the treatments for BC have many limitations, such as resistance and a lack of reliable biomarkers. Currently the Hippo pathway is emerging as a tumor suppressor pathway with its four core components that regulate downstream transcriptional targets. In this review, we introduce the present targeted therapies of BC, and then discuss the roles of the Hippo pathway in BC. Finally, we summarize the evidence of the small molecule inhibitors that target the Hippo pathway, and then discuss the possibilities and future direction of the Hippo-targeted drugs for BC therapy.


Cancers ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 94 ◽  
Author(s):  
Zaid Taha ◽  
Helena Janse van Rensburg ◽  
Xiaolong Yang

Since its discovery, the Hippo pathway has emerged as a central signaling network in mammalian cells. Canonical signaling through the Hippo pathway core components (MST1/2, LATS1/2, YAP and TAZ) is important for development and tissue homeostasis while aberrant signaling through the Hippo pathway has been implicated in multiple pathologies, including cancer. Recent studies have uncovered new roles for the Hippo pathway in immunology. In this review, we summarize the mechanisms by which Hippo signaling in pathogen-infected or neoplastic cells affects the activities of immune cells that respond to these threats. We further discuss how Hippo signaling functions as part of an immune response. Finally, we review how immune cell-intrinsic Hippo signaling modulates the development/function of leukocytes and propose directions for future work.


2020 ◽  
Vol 31 (5) ◽  
pp. 946-961 ◽  
Author(s):  
Chunhua Xu ◽  
Li Wang ◽  
Yu Zhang ◽  
Wenling Li ◽  
Jinhong Li ◽  
...  

BackgroundThe serine/threonine kinases MST1 and MST2 are core components of the Hippo pathway, which has been found to be critically involved in embryonic kidney development. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the pathway’s main effectors. However, the biologic functions of the Hippo/YAP pathway in adult kidneys are not well understood, and the functional role of MST1 and MST2 in the kidney has not been studied.MethodsWe used immunohistochemistry to examine expression in mouse kidneys of MST1 and MST2, homologs of Hippo in Drosophila. We generated mice with tubule-specific double knockout of Mst1 and Mst2 or triple knockout of Mst1, Mst2, and Yap. PCR array and mouse inner medullary collecting duct cells were used to identify the primary target of Mst1/Mst2 deficiency.ResultsMST1 and MST2 were predominantly expressed in the tubular epithelial cells of adult kidneys. Deletion of Mst1/Mst2 in renal tubules increased activity of YAP but not TAZ. The kidneys of mutant mice showed progressive inflammation, tubular and glomerular damage, fibrosis, and functional impairment; these phenotypes were largely rescued by deletion of Yap in renal tubules. TNF-α expression was induced via both YAP-dependent and YAP-independent mechanisms, and TNF-α and YAP amplified the signaling activities of each other in the tubules of kidneys with double knockout of Mst1/Mst2.ConclusionsOur findings show that tubular Mst1/Mst2 deficiency leads to CKD through both the YAP and non-YAP pathways and that tubular YAP activation induces renal fibrosis. The pathogenesis seems to involve the reciprocal stimulation of TNF-α and YAP signaling activities.


2017 ◽  
Vol 77 (18) ◽  
pp. 4921-4933 ◽  
Author(s):  
Aleksandra Toloczko ◽  
Fusheng Guo ◽  
Hiu-Fung Yuen ◽  
Qing Wen ◽  
Stephen A. Wood ◽  
...  

Author(s):  
Zhengjin He ◽  
Ruihan Li ◽  
Hai Jiang

The Hippo pathway is highly conserved from Drosophila to mammals. As a key regulator of cell proliferation, the Hippo pathway controls tissue homeostasis and has a major impact on tumorigenesis. The originally defined core components of the Hippo pathway in mammals include STK3/4, LATS1/2, YAP1/TAZ, TEAD, VGLL4, and NF2. However, for most of these genes, mutations and copy number variations are relatively uncommon in human cancer. Several other recently identified upstream and downstream regulators of Hippo signaling, including FAT1, SHANK2, Gq/11, and SWI/SNF complex, are more commonly dysregulated in human cancer at the genomic level. This review will discuss major genomic events in human cancer that enable cancer cells to escape the tumor-suppressive effects of Hippo signaling.


2020 ◽  
Author(s):  
Sherzod A. Tokamov ◽  
Ting Su ◽  
Anne Ullyot ◽  
Richard G. Fehon

AbstractThe Hippo signaling pathway regulates tissue growth in many animals. Multiple upstream components are known to promote Hippo pathway activity, but the organization of these different inputs, the degree of crosstalk between them, and whether they are regulated in a distinct manner is not well understood. Kibra activates the Hippo pathway by recruiting the core Hippo kinase cassette to the apical cortex. Here we show that the Hippo pathway downregulates Kibra levels independently of Yorkie-mediated transcriptional output. We find that the Hippo pathway promotes Kibra degradation via SCFSlimb-mediated ubiquitination, that this effect requires the core kinases Hippo and Warts, and that this mechanism functions independently of other upstream Hippo pathway activators including Crumbs and Expanded. Moreover, Kibra degradation appears patterned across tissue. We propose that Kibra degradation by the Hippo pathway serves as a negative feedback loop to tightly control Kibra-mediated Hippo pathway activation and ensure optimally scaled and patterned tissue growth.


Author(s):  
Niall Quinn ◽  
Lucía García-Gutiérrez ◽  
Carolanne Doherty ◽  
Alexander von Kriegsheim ◽  
Emma Fallahi ◽  
...  

The Hippo pathway regulates a complex signalling network which mediates several biological functions including cell proliferation, organ size and apoptosis. Several scaffold proteins regulate the crosstalk of the members of the pathway with other signalling pathways and play an important role in the diverse output controlled by this pathway. In this study we have identified the scaffold protein IQGAP1 as a novel interactor of the core kinases of the Hippo pathway, MST2 and LATS1. Our results indicate that IQGAP1 scaffolds MST2 and LATS1, supresses their kinase activity, and YAP1-dependent transcription. Additionally, we show that IQGAP1 is a negative regulator of the non-canonical pro-apoptotic pathway and may enable the crosstalk between this pathway and the ERK and AKT signalling modules. Our data also show that bile acids regulate the IQGAP1-MST2-LATS1 signalling module in hepatocellular carcinoma cells which could be necessary for the inhibition of MST2-dependent apoptosis and hepatocyte transformation.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Sung Jun Bae ◽  
Xuelian Luo

First discovered two decades ago through genetic screens in Drosophila, the Hippo pathway has been shown to be conserved in metazoans and controls organ size and tissue homeostasis through regulating the balance between cell proliferation and apoptosis. Dysregulation of the Hippo pathway leads to aberrant tissue growth and tumorigenesis. Extensive studies in Drosophila and mammals have identified the core components of Hippo signaling, which form a central kinase cascade to ultimately control gene expression. Here, we review recent structural, biochemical, and cellular studies that have revealed intricate phosphorylation-dependent mechanisms in regulating the formation and activation of the core kinase complex in the Hippo pathway. These studies have established the dimerization-mediated activation of the Hippo kinase (mammalian Ste20-like 1 and 2 (MST1/2) in mammals), the dynamic scaffolding and allosteric roles of adaptor proteins in downstream kinase activation, and the importance of multisite linker autophosphorylation by Hippo and MST1/2 in fine-tuning the signaling strength and robustness of the Hippo pathway. We highlight the gaps in our knowledge in this field that will require further mechanistic studies.


Sign in / Sign up

Export Citation Format

Share Document