scholarly journals Asp22 drives the protonation state of the Staphylococcus epidermidis glucose/H+ symporter

2020 ◽  
Vol 295 (45) ◽  
pp. 15253-15261
Author(s):  
Ana Filipa Santos Seica ◽  
Cristina V. Iancu ◽  
Benedikt Pfeilschifter ◽  
M. Gregor Madej ◽  
Jun-Yong Choe ◽  
...  

The Staphylococcus epidermidis glucose/H+ symporter (GlcPSe) is a membrane transporter highly specific for glucose and a homolog of the human glucose transporters (GLUT, SLC2 family). Most GLUTs and their bacterial counterparts differ in the transport mechanism, adopting uniport and sugar/H+ symport, respectively. Unlike other bacterial GLUT homologs (for example, XylE), GlcPSe has a loose H+/sugar coupling. Asp22 is part of the proton-binding site of GlcPSe and crucial for the glucose/H+ co-transport mechanism. To determine how pH variations affect the proton site and the transporter, we performed surface-enhanced IR absorption spectroscopy on the immobilized GlcPSe. We found that Asp22 has a pKa of 8.5 ± 0.1, a value consistent with that determined previously for glucose transport, confirming the central role of this residue for the transport mechanism of GlcPSe. A neutral replacement of the negatively charged Asp22 led to positive charge displacements over the entire pH range, suggesting that the polarity change of the WT reflects the protonation state of Asp22. We expected that the substitution of the residue Ile105 for a serine, located within hydrogen-bonding distance to Asp22, would change the microenvironment, but the pKa of Asp22 corresponded to that of the WT. A167E mutation, selected in analogy to the XylE, introduced an additional protonatable site and perturbed the protonation state of Asp22, with the latter now exhibiting a pKa of 6.4. These studies confirm that Asp22 is the proton-binding residue in GlcPSe and show that charged residues in its vicinity affect the pKa of glucose/H+ symport.

2020 ◽  
Vol 117 (41) ◽  
pp. 25517-25522 ◽  
Author(s):  
Jack A. Henderson ◽  
Yandong Huang ◽  
Oliver Beckstein ◽  
Jana Shen

Escherichia coliNhaA is a prototypical sodium–proton antiporter responsible for maintaining cellular ion and volume homeostasis by exchanging two protons for one sodium ion; despite two decades of research, the transport mechanism of NhaA remains poorly understood. Recent crystal structure and computational studies suggested Lys300 as a second proton-binding site; however, functional measurements of several K300 mutants demonstrated electrogenic transport, thereby casting doubt on the role of Lys300. To address the controversy, we carried out state-of-the-art continuous constant pH molecular dynamics simulations of NhaA mutants K300A, K300R, K300Q/D163N, and K300Q/D163N/D133A. Simulations suggested that K300 mutants maintain the electrogenic transport by utilizing an alternative proton-binding residue Asp133. Surprisingly, while Asp133 is solely responsible for binding the second proton in K300R, Asp133 and Asp163 jointly bind the second proton in K300A, and Asp133 and Asp164 jointly bind two protons in K300Q/D163N. Intriguingly, the coupling between Asp133 and Asp163 or Asp164 is enabled through the proton-coupled hydrogen-bonding network at the flexible intersection of two disrupted helices. These data resolve the controversy and highlight the intricacy of the compensatory transport mechanism of NhaA mutants. Alternative proton-binding site and proton sharing between distant aspartates may represent important general mechanisms of proton-coupled transport in secondary active transporters.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2360
Author(s):  
Viviana Mollica Nardo ◽  
Vincenzo Renda ◽  
Sebastiano Trusso ◽  
Rosina Celeste Ponterio

Surface Enhanced Raman Spectroscopy is commonly used as analytical improvement to conventional Raman spectroscopy, able to respond to qualitative diagnostic enquiries, which involve low-concentrated molecular species in complex matrix. In this paper, we described fabrication, characterization and testing of a type of SERS-active substrates realized specifically to detect pigments in work of art. In particular, we detailed the SERS activity of nanostructured noble metal films deposited by pulsed laser ablation onto glass and polishing sheets substrates. The SERS response of the substrates was tested against the presence of some organic dyes in aqueous solutions. Measurements were performed at different pH values, in acidic or basic range, in order to investigate its role in the adsorption mechanism, thus fostering the SERS amplification. In addition, we checked the possible deterioration of the structural properties of the substrates that could occur in presence of alkaline or acidic environment. SERS activity of the substrates was tested against a commonly dye used as a SERS standard (Blue Methylene). Thereafter, substrates have been tested on two organic dyes (Alizarine red-S and Brazilwood), which had proven to be Raman active but present also either a weak Raman scattering cross section and/or a high fluorescence emission. The substrates have proven effective in amplifying Raman scattering of all dyes, quenching troubling fluorescence effects. Furthermore, they have proven to be stable in the pH range between 3 and 11. Furthermore, we carry out of vibrational DFT-calculation of dyes that provide a complete description of the observed SERS spectra.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-9
Author(s):  
Robert M. Anderson ◽  
Amy M. Lambert

The island marble butterfly (Euchloe ausonides insulanus), thought to be extinct throughout the 20th century until re-discovered on a single remote island in Puget Sound in 1998, has become the focus of a concerted protection effort to prevent its extinction. However, efforts to “restore” island marble habitat conflict with efforts to “restore” the prairie ecosystem where it lives, because of the butterfly’s use of a non-native “weedy” host plant. Through a case study of the island marble project, we examine the practice of ecological restoration as the enactment of particular norms that define which species are understood to belong in the place being restored. We contextualize this case study within ongoing debates over the value of “native” species, indicative of deep-seated uncertainties and anxieties about the role of human intervention to alter or manage landscapes and ecosystems, in the time commonly described as the “Anthropocene.” We interpret the question of “what plants and animals belong in a particular place?” as not a question of scientific truth, but a value-laden construct of environmental management in practice, and we argue for deeper reflexivity on the part of environmental scientists and managers about the social values that inform ecological restoration.


Author(s):  
Marsel Eliaser Liunokas

Timorese culture is patriarchal in that men are more dominant than women. As if women were not considered in traditional rituals so that an understanding was built that valued women lower than men. However, in contrast to the article to be studied, this would like to see the priority of women’s roles in traditional marriages in Belle village, South Central Timor. The role of women wiil be seen from giving awards to their parents called puah mnasi manu mnasi. This paper aims to look at the meaning of the rituals of puah mnasi maun mnasi and the role and strengths that women have in traditional marriage rituals in the village of Belle, South Central Timor. The method used for this research is a qualitative research method using interview techniques with a number of people in the Belle Villa community and literature study to strengthen this writing. Based on the data obtained this paper shows that the adat rituals of puah mnasi manu mnasi provide a value that can be learned, namely respect for women, togetherness between the two families, and brotherhood that is intertwined due to customary marital affrairs.


2020 ◽  
Vol 19 (12) ◽  
pp. 2225-2252
Author(s):  
E.V. Popov ◽  
V.L. Simonova ◽  
O.V. Komarova ◽  
S.S. Kaigorodova

Subject. The emergence of new ways of interaction between sellers and buyers, the formation of new sales channels and product promotion based on the use of digital economy tools is at the heart of improving the business processes. Social networks became a tool for development; their rapid growth necessitates theoretical understanding and identification of potential application in enterprise's business process digitalization. Objectives. We explore the role of social media in the digitalization of business processes, systematize the impact of social networks on business processes of enterprises in the digital economy. Methods. The theoretical and methodological analysis of social networks as a tool for digitalization of company's business processes rests on the content analysis of domestic and foreign scientific studies, comparison, generalization and systematization. Results. We highlight the key effects of the impact of social networks on the business processes of the company; show that the digitalization of business processes should be considered in the context of a value-based approach, aimed at creating a value through the algorithmization of company operations. We determine that social networks are one of the most important tools for digitalization of company's business processes, as they have a high organizational and management potential. We also systematize the effects of social media on company's business processes. Conclusions. We present theoretical provisions of the impact of social networks on business processes of enterprises, which will enable to model and organize ideas about the development of digital ecosystems and the formation of business models.


2021 ◽  
Vol 22 (12) ◽  
pp. 6458
Author(s):  
Aleksandra Pieniężna ◽  
Weronika Witak ◽  
Aneta Szymańska ◽  
Justyna Brasuń

In this paper, we present studies on the influence of the disulfide bridge on the copper (II) ions’ binding abilities by the cyclic His4-peptide. The studied ligand HKHPHRHC-S-S-C consists of nine amino acids. The cyclic structure was obtained through a disulfide bridge between two cysteinyl groups. Moreover, this peptide is characterized by the presence of four His residues in the sequence, which makes it an interesting ligand for transition metal ions. The potentiometric and spectroscopic (UV-Vis spectroscopy and circular dichroism spectroscopy (CD)) studies were carried out in various molar ligand to metal ratios: 2:1, 1:1, and 1:2, in the pH range of 2.5–11 at 25 °C. The results showed that the cyclic His4-peptide promotes dinuclear complexes in each of these systems and forms the final dinuclear species with the {NIm, 3N-amide}{NIm, 3N-amide} coordination mode. The obtained data shows that cyclization by the formation of the disulfide bond has an impact on the peptide chain flexibility and appearance of additional potential donors for metal ions and influences the copper (II) ions’ coordination.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 707
Author(s):  
Petros Vasilakos ◽  
Yongtao Hu ◽  
Armistead Russell ◽  
Athanasios Nenes

Formation of aerosol from biogenic hydrocarbons relies heavily on anthropogenic emissions since they control the availability of species such as sulfate and nitrate, and through them, aerosol acidity (pH). To elucidate the role that acidity and emissions play in regulating Secondary Organic Aerosol (SOA), we utilize the 2013 Southern Oxidant and Aerosol Study (SOAS) dataset to enhance the extensive mechanism of isoprene epoxydiol (IEPOX)-mediated SOA formation implemented in the Community Multiscale Air Quality (CMAQ) model (Pye et al., 2013), which was then used to investigate the impact of potential future emission controls on IEPOX OA. We found that the Henry’s law coefficient for IEPOX was the most impactful parameter that controls aqueous isoprene OA products, and a value of 1.9 × 107 M atm−1 provides the best agreement with measurements. Non-volatile cations (NVCs) were found in higher-than-expected quantities in CMAQ and exerted a significant influence on IEPOX OA by reducing its production by as much as 30% when present. Consistent with previous literature, a strong correlation of isoprene OA with sulfate, and little correlation with acidity or liquid water content, was found. Future reductions in SO2 emissions are found to not affect this correlation and generally act to increase the sensitivity of IEPOX OA to sulfate, even in extreme cases.


Sign in / Sign up

Export Citation Format

Share Document