scholarly journals Identification and functional characterization of the Piezo1 channel pore domain

2020 ◽  
pp. jbc.RA120.015905
Author(s):  
Elena D Nosyreva ◽  
David Thompson ◽  
Ruhma Syeda

Mechanotransduction is the process by which cells convert physical forces into electro-chemical responses. On a molecular scale these forces are detected by mechanically activated ion channels, which constitute the basis for hearing, touch, pain, cold and heat sensation amongst other physiological processes. Exciting high-resolution structural details of these channels are currently emerging that will eventually allow us to delineate the molecular determinants of gating and ion permeation. However, our structural-functional understanding across the family remains limited. Piezo1 is one of the largest and least understood of these channels, with various structurally identified features within its trimeric assembly. This study seeks to determine the modularity and function of Piezo1 channels by constructing deletion proteins guided by cryo EM structural knowledge. Our comprehensive functional study identified, for the first time, the minimal amino acid sequence of the full-length Piezo1 that can fold and function as the channel’s pore domain between E2172 and the last residue E2547. While, the addition of an anchor region has no effect on permeation properties. The Piezo1 pore domain is not pressure sensitive and the appending of Piezo Repeat-A did not restore pressure-dependent gating, hence the sensing module must exist between residues 1-1952. Our efforts delineating the permeation and gating regions within this complex ion channel have implications in identifying small molecules that exclusively regulate the activity of the channel’s pore module to influence mechanotransduction and downstream processes.

2014 ◽  
Author(s):  
Martina Becker ◽  
Steffen Güttler ◽  
Annabell Bachem ◽  
Evelyn Hartung ◽  
Ahmed Mora ◽  
...  

In the past, lack of lineage markers confounded the classification of dendritic cells (DC) in the intestine and impeded a full understanding of their location and function. We have recently shown that the chemokine receptor XCR1 is a lineage marker for cross-presenting DC in the spleen. Now we provide evidence that intestinal XCR1+ DC largely, but not fully, overlap with CD103+ CD11b- DC, the hypothesized correlate of “cross-presenting DC” in the intestine, and are selectively dependent in their development on the transcription factor Batf3. XCR1+ DC are located in the villi and epithelial crypts of the lamina propria of the small intestine, the T cell zones of Peyer’s Patches, and in the T cell zones and sinuses of the draining mesenteric lymph node. Functionally, we could demonstrate for the first time that XCR1+ / CD103+ CD11b- DC excel in the cross-presentation of orally applied antigen. Together, our data show that XCR1 is a lineage marker for cross-presenting DC also in the intestinal immune system. Further, extensive phenotypic analyses reveal that expression of the integrin SIRPα consistently demarcates the XCR1- DC population. We propose a simplified and consistent classification system for intestinal DC based on the expression of XCR1 and SIRPα.


Reproduction ◽  
2009 ◽  
Vol 137 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Chang-Gi Hur ◽  
Changyong Choe ◽  
Gyu-Tae Kim ◽  
Seong-Keun Cho ◽  
Jae-Yong Park ◽  
...  

Two-pore domain K+(K2P) channels that help set the resting membrane potential of excitable and nonexcitable cells are expressed in many kinds of cells and tissues. However, the expression of K2Pchannels has not yet been reported in bovine germ cells. In this study, we demonstrate for the first time that K2Pchannels are expressed in the reproductive organs and germ cells of Korean cattle. RT-PCR data showed that members of the K2Pchannel family, specifically KCNK3, KCNK9, KCNK2, KCNK10, and KCNK4, were expressed in the ovary, testis, oocytes, embryo, and sperm. Out of these channels,KCNK2andKCNK4mRNAs were abundantly expressed in the mature oocytes, eight-cell stage embryos, and blastocysts compared with immature oocytes. KCNK4 and KCNK3 were significantly increased in eight-cell stage embryos. Immunocytochemical data showed that KCNK2, KCNK10, KCNK4, KCNK3, and KCNK9 channel proteins were expressed at the membrane of oocytes and blastocysts. KCNK10 and KCNK4 were strongly expressed and distributed in oocyte membranes. These channel proteins were also localized to the acrosome sperm cap. In particular, KCNK3 and KCNK4 were strongly localized to the post-acrosomal region of the sperm head and the equatorial band within the sperm head respectively. These results suggest that K2Pchannels might contribute to the background K+conductance of germ cells and regulate various physiological processes, such as maturation, fertilization, and development.


1985 ◽  
Vol 248 (6) ◽  
pp. R702-R708
Author(s):  
R. J. Lowy ◽  
F. P. Conte

A batch method for isolating viable salt glands from the naupliar brine shrimp (Artemia salina) has been developed. This protocol produces a final preparation consisting of approximately 185 isolated salt glands, representing 1 X 10(4) secretory cells/g wet wt nauplii, with a final purity of 88%. Assays of cell integrity and function indicate good retention of in situ characteristics. Vital dye was excluded by 95% of the cells for at least 24 h. The O2 consumption rate was 22.7 nM O2 X min-1 X mg protein-1 and could be altered predictably by compounds known to affect oxidative phosphorylation and ion transport. The specific activity of the Na+-K+-ATPase in the salt gland, measured here for the first time, was 9.1 mM Pi X h-1 X mg protein-1. This is a substantial proportion of the body total, 17%, as expected for an active ion-transporting epithelium.


Author(s):  
Alicia Abarca ◽  
Christina M. Franck ◽  
Cyril Zipfel

AbstractPlant peptide hormones are important players controlling various aspects of plants’ lives. RAPID ALKALINIZATION FACTOR (RALF) peptides have recently emerged as important players in multiple physiological processes. Numerous studies on RALF peptides focused on broad phylogenetic analysis including multiple species. Thus, progress has been made in understanding the evolutionary processes that shaped this family. Nevertheless, to date, there is no comprehensive, family-wide functional study on RALF peptides. Here, we analysed the phylogeny and function of the proposed multigenic RALF peptide family in the model plant Arabidopsis thaliana, ecotype Col-0. Our phylogenetic analysis reveals that two of the previously proposed RALF peptides are not genuine RALF peptides, which leads us to propose a new consensus AtRALF peptide family annotation. Moreover, we show that the majority of AtRALF peptides are able to induce seedling or root growth inhibition in A. thaliana seedlings when applied exogenously as synthetic peptides. Additionally, we show that most of these responses are dependent on the Catharanthus roseus RLK1-LIKE receptor kinase FERONIA, suggesting a pivotal role in the perception of multiple RALF peptides.One sentence summaryThe majority of A. thaliana RALF peptides inhibit growth in a FERONIA-dependent manner


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


2014 ◽  
Vol 155 (41) ◽  
pp. 1624-1631 ◽  
Author(s):  
Attila Nemes ◽  
Tamás Forster

Left atrium is not a passive heart chamber, because it has a dynamic motion respecting heart cycle and, in accordance with its stretching, it releases atrial natriuretic peptides. Since in the course of certain invasive procedures the size of left atrium may change substantially, its exact measurement and functional characterization are essential. The aim of the present review is to summarize echocardiographic methods for the assessment of left atrial size and functional parameters. Orv. Hetil., 2014. 155(41), 1624–1631.


2020 ◽  
Vol 27 (11) ◽  
pp. 1068-1081
Author(s):  
Xi Liu ◽  
Dongwu Liu ◽  
Yangyang Shen ◽  
Mujie Huang ◽  
Lili Gao ◽  
...  

Matrix Metalloproteinases (MMPs) belong to a family of metal-dependent endopeptidases which contain a series of conserved pro-peptide domains and catalytic domains. MMPs have been widely found in plants, animals, and microorganisms. MMPs are involved in regulating numerous physiological processes, pathological processes, and immune responses. In addition, MMPs play a key role in disease occurrence, including tumors, cardiovascular diseases, and other diseases. Compared with invertebrate MMPs, vertebrate MMPs have diverse subtypes and complex functions. Therefore, it is difficult to study the function of MMPs in vertebrates. However, it is relatively easy to study invertebrate MMPs because there are fewer subtypes of MMPs in invertebrates. In the present review, the structure and function of MMPs in invertebrates were summarized, which will provide a theoretical basis for investigating the regulatory mechanism of MMPs in invertebrates.


2019 ◽  
Vol 20 (11) ◽  
pp. 1046-1051 ◽  
Author(s):  
Przemysław Gajda-Morszewski ◽  
Klaudyna Śpiewak-Wojtyła ◽  
Maria Oszajca ◽  
Małgorzata Brindell

Lactoferrin was isolated and purified for the first time over 50-years ago. Since then, extensive studies on the structure and function of this protein have been performed and the research is still being continued. In this mini-review we focus on presenting recent scientific efforts towards the elucidation of the role and therapeutic potential of lactoferrin saturated with iron(III) or manganese(III) ions. The difference in biological activity of metal-saturated lactoferrin vs. the unmetalated one is emphasized. The strategies for oral delivery of lactoferrin, are also reviewed, with particular attention to the metalated protein.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stephan Hirschi ◽  
David Kalbermatter ◽  
Zöhre Ucurum ◽  
Thomas Lemmin ◽  
Dimitrios Fotiadis

AbstractThe green-light absorbing proteorhodopsin (GPR) is the archetype of bacterial light-driven proton pumps. Here, we present the 2.9 Å cryo-EM structure of pentameric GPR, resolving important residues of the proton translocation pathway and the oligomerization interface. Superposition with the structure of a close GPR homolog and molecular dynamics simulations reveal conformational variations, which regulate the solvent access to the intra- and extracellular half channels harbouring the primary proton donor E109 and the proposed proton release group E143. We provide a mechanism for the structural rearrangements allowing hydration of the intracellular half channel, which are triggered by changing the protonation state of E109. Functional characterization of selected mutants demonstrates the importance of the molecular organization around E109 and E143 for GPR activity. Furthermore, we present evidence that helices involved in the stabilization of the protomer interfaces serve as scaffolds for facilitating the motion of the other helices. Combined with the more constrained dynamics of the pentamer compared to the monomer, these observations illustrate the previously demonstrated functional significance of GPR oligomerization. Overall, this work provides molecular insights into the structure, dynamics and function of the proteorhodopsin family that will benefit the large scientific community employing GPR as a model protein.


Sign in / Sign up

Export Citation Format

Share Document