scholarly journals The effect of date of cut and barley substitution on gain and on the efficiency of utilization of grass silage by growing cattle

1988 ◽  
Vol 60 (2) ◽  
pp. 297-306 ◽  
Author(s):  
C. Thomas ◽  
B. G. Gibbs ◽  
D. E. Beever ◽  
B. R. Thurnham

1. A primary growth of perennial ryegrass (Lolium perenne) was cut early or late to produce silages of high and low digestibility. The crops were wilted for 2–4 h and preserved with formic acid at 2.4 litres/t fresh weight. The resulting silages were well preserved with a pH of 3.9 and 3.8, lactic acid content of 108 and 73 g/kg dry matter (DM) and total nitrogen content of 24.6 and 18.4 g/kg DM for early- and late-cut silage respectively.2. Forty-two British Friesian male castrates (steers) initially 12 months of age and 305 kg live weight (LW) were used, of which ten were slaughtered at the start of the experiment. The remaining steers were divided into four groups of eight animals and were given the early-cut silage alone (H) or the late-cut silage alone (L) or with barley at either 280 (LCI) or 560 (LC2) g DM/kg total DM. The intake of total DM was restricted to a daily allowance of 18 g DM/kg LW and the steers were slaughtered in two groups after 119 and 140 d on experiment.3. Both earlier cutting of herbage and substitution of late-cut silage with barley significantly (P <0.001) increased the apparent digestibility of gross energy (H0.748, L0.619, LC10.668, LC20.705), whereas earlier cutting increased the digestibility of acid-detergent fibre from 0.638 (L) to 0.777 (H) and substitution with barley resulted in a significant (P <0.001) depression to 0.595 (LCI) and 0.519 (LC2). Substitution of late-cut silage with barley significantly (P <0.001) increased metabolizable energy (ME) intake from 58.9 (L) to 69.5 MJ/d (LC2) and crude protein (N × 6.25; CP) intake from 688 (L) to 779 g/d (LC2), but the highest intakes of ME and CP (73.5 MJ/d and 952 g/d respectively) were achieved with the early-cut silage.4. Earlier cutting resulted in significant (P <0.001) increases in body-weight gain from 292 to 696 g/d, fat gain from 121 to 260 g/d, protein gain from 31.1 to 86.9 g/d and energy retention from 5.5 to 12.2 MJ/d for silages L and H respectively. However, substitution of the late-cut silage with barley increased gains to a greater extent. Thus, empty-body gain was increased to 552 and 800 g/d, fat gain to 189 and 302 g/d, protein gain to 76 and 116 g/d and energy retention to 9.2 and 14.6 MJ/d for diets LCI and LC2 respectively. The difference in gains between diets H and LC2 achieved significance (P <0.05) for all components except fat.5. It is concluded that although earlier cutting of herbage for silage results in increased gains of protein and energy, the amounts retained are less than those from a similar increment of ME and CP achieved by substituting a late-cut silage with barley.

2013 ◽  
Vol 152 (4) ◽  
pp. 667-674 ◽  
Author(s):  
D. B. DAVID ◽  
C. H. E. C. POLI ◽  
J. V. SAVIAN ◽  
G. A. AMARAL ◽  
E. B. AZEVEDO ◽  
...  

SUMMARYThe current research was carried out to evaluate the use of crude protein and fibre components in faeces for estimating intake and digestibility in sheep fed with pearl millet (Pennisetum americanum (L.) Leeke). The equations were developed from four trials in metabolism cages with 16 sheep in each trial. Each animal received a different quantity of millet leaves in the diet: 0·015, 0·020 and 0·025 dry matter (DM) as a proportion of live weight (LW) and ad libitum with at least 0·2 of daily feed refusals. Organic matter intake (OMI, g/day) was measured, through the difference between offer and refusals; total faeces were collected for 5 days, which was used to determine faecal crude protein (CPf, g/day and g/kg of organic matter (OM)), faecal neutral detergent fibre (NDFf, g/day and g/kg OM), faecal acid detergent fibre (ADFf, g/day and g/kg OM) and OM digestibility (OMD). Linear regression equations were calculated to determine the relationship between OMI and CPf (P<0·001, R2=0·90, relative prediction error (RPE=14·02%). A multiple linear equation was generated for OMI including CPf and NDFf (P<0·001, R2=0·94; RPE=9·25%). Hyperbolic (single and multiple) and exponential models were tested to estimate OMD, where the hyperbolic multiple model including CPf and NDFf showed lower RPE (3·90%). These equations for estimating OMI and OMD were evaluated on sheep grazing P. americanum fertilized with increasing levels of nitrogen (N) (50, 100, 200 and 400 kg N/ha), comparing measured and estimated OMI. The intake estimated by multiple regression (CP and NDFf) showed a higher R2 (0·98) and lower RPE (5·25%) than the simple (CPf only) linear equation (R2=0·94; RPE=20·45%). The results demonstrated the feasibility of using the faecal index generated in metabolism cages for estimating intake and digestibility in sheep grazing P. americanum.


1990 ◽  
Vol 64 (3) ◽  
pp. 639-651 ◽  
Author(s):  
Isabelle Ortigues ◽  
T. Smith ◽  
M. Gill ◽  
S. B. Cammell ◽  
N. W. Yarrow

Thirty-two 160 kg dairy heifers were used to measure the effects of increasing dietary protein content on growth and heat production. A basal diet containing (g/kg) 550 sodium hydroxide-treated straw, 220 barley, 220 sugarbeet pulp and 10 urea was offered with 0, 76 and 152 g fishmeal/kg dry matter of the basal diet (F0, F1 and F2 levels respectively). The three diets were each given at two levels of feeding (low, L; high, H): 57.6 g/d per kg metabolic body-weight (W0.75) for the LF0 diet and 74.7 g/d per kg W0.75 for the HFO diet. Apparent digestibility of the diets increased in response to the addition of fishmeal. Mean dry matter digestibility values were 0.67, 0.67, 0.69, 0.66, 0.68 and 0.69 and those for acid-detergent fibre digestibility were 0.60, 0.63, 0.66, 0.58, 0.60 and 0.65 for diets LF0, LF1, LF2, HF0, HF1 and HF2 respectively. Nitrogen retention increased in response to both fishmeal and feeding level. Live-weight gains were 170, 296, 434 g/d for the LF0, LF1 and LF2 diets and 468, 651 and 710 g/d for the HF0, HF1 and HF2 diets respectively. There were significant effects of increasing the plane of feeding and the level of fishmeal in the diet on live-weight gain. Dietary effects on live-weight gains were accompanied by increases in mean energy retention of 23, 45, 82, 94, 160 and 152 kJ/d per kg W0.75 for diets LF0, LF1, LF2, HF0, HF1 and HF2 respectively, but no definite evidence was obtained that dietary supplementation with fishmeal modified the efficiency of utilization of metabolizable energy for growth.


1985 ◽  
Vol 40 (3) ◽  
pp. 389-400 ◽  
Author(s):  
C. Grainger ◽  
C. W. Holmes ◽  
Y. F. Moore

ABSTRACTSix lactating Friesian cows (three high and three low breeding index cows) were subjected to a total of 28 complete energy and nitrogen balances during early and late lactation. In addition, 12 non-lactating Friesian cows (six high and six low breeding index cows) were offered individually pasture indoors for 62 days, beginning at approx. 180 days of pregnancy. Cows within each genotype were randomly allocated to feeding levels which were nominally equivalent to their requirements for maintenance or twice maintenance. Eight of the 12 cows (four high and four low breeding index) were each subjected to two energy balance periods at approx. 210 (period 1) and 230 (period 2) days of pregnancy.When offered pasture ad libitum during lactation, cows with high breeding indexes consumed significantly more gross energy per unit of metabolic live weight (P < 0·05) than did cows with low breeding indexes, but the two genotypes did not differ in their ability to metabolize the gross energy of the food, or in the individual losses of energy in faeces, urine or methane.There were no significant differences between genotypes in their heat production at a common energy intake except during restricted feeding in early lactation when high breeding index cows produced less heat than did low breeding index cows (P < 0·05). During lactation high breeding index cows retained a higher proportion of their total energy retention (milk + body tissue energy) as milk in late lactation (P < 0·01) but not in early lactation.For non-lactating cows, both genotypes required similar amounts of metabolizable energy to maintain zero maternal body energy retention, 0·79 and 0·80 MJ/M0·75 for periods 1 and 2 respectively. The efficiency with which metabolizable energy was converted to net energy (kg) was similar for both genotypes at both stages of pregnancy, the mean value being 0·52. The metabolizable energy required to maintain body condition was estimated to be 0·78 and 0·71 MJ/M0·75 for high and low breeding index cows respectively. The metabolizable energy required in excess of maintenance to promote a gain of one unit of body condition was estimated to be 2290 MJ. This is equivalent to 27 MJ energy retained per kg live-weight gain.For lactating and non-lactating cows the differences between genotypes in their utilization of nitrogen were small and inconsistent.


1987 ◽  
Vol 44 (1) ◽  
pp. 65-73 ◽  
Author(s):  
P. E. V. Williams ◽  
R. J. Fallon ◽  
G. M. Innes ◽  
P. Garthwaite

ABSTRACTIn three experiments the effects of replacing barley with citrus or unmolassed beet pulp in starter diets for calves was examined. In experiment 1, 40 Friesian bull calves were offered to appetite from 14 to 91 days of age one of four complete pelleted diets, each of which contained 200 g ground straw per kg and n i which the ratio of barley to pulp (citrus and beet pulp in the ratio 1:1) was 100:0 (A); 67:33 (B); 33:67 (C) and 0:100 (D). All diets contained 12·1 MJ metabolizable energy and 187 g crude protein per kg dry matter (DM). Milk replacer containing 200 g fat per kg was offered once daily (0·44 kg/day) until day 49 when the calves were abruptly weaned. Up to weaning (days 14 to 49) and after weaning (days 50 to 91) intake of DM was significantly increased by replacing barley with pulp (P< 0·05). Intakes (kg DM per day) of diets A, B, C and D were 0·31, 0·44, 0·51 and 0·50 before weaning and 2·07, 2·08, 2·23 and 2·38 after weaning. Weight gains (kg/day) of calves given pulp tended to be higher before weaning (0·44v.0·58 for Av.mean of B, C and D) but lower after weaning (0·73v.0·68) than of calves given the cereal-based diet. In experiment 2, 65 calves were given diets similar to A and C except that the pulp was supplied totally by unmolassed beet pulp, they were given only 0·35 kg milk replacer per day and weaned on day 35. The results were similar to those obtained in experiment 1; between days 14 to 84 intake was higher (P< 0·05) and there was a tendency for weight gain to be higher in calves given the diet containing pulp. The DM digestibility of the diets decreased significantly with inclusion of pulp (P< 0·05); digestibility of nitrogen was severely depressed but there was an increase in digestibility of acid-detergent fibre. Growth rate was possibly restricted by the availability of nitrogen in diets containing pulp.


1987 ◽  
Vol 57 (3) ◽  
pp. 355-361 ◽  
Author(s):  
Kirsten Christensen ◽  
Grete Thorbek

1. Total methane excretion (CH4 in breath+flatus) was measured in two experiments with thirty-six castrated male pigs (Danish Landrace) during the growth period from 20 to 120 kg live weight (LW). In Expt A, twenty-eight pigs were fed on a commercial diet alternately at high (HFL; metabolizable energy (ME) 1234 (SE 41) kJ/kg LW0.75) or low (LFL; ME 784 (SE 31) kJ/kg LW0.75) feed levels in different weight classes. In Expt B, eight pigs were constantly fed on a semi-purified diet at HFL without (-oil) or with 90 g soya-bean oil/kg diet (foil) corresponding to daily intakes of ME of 1339 (SE 11) and 1413 (SE 8) kJ/kg LW0.75 respectively.2. CH4 excretion was measured during 24 h respiration trials in open-air-circulation chambers.3. About 1 litre CH4 was excreted per day at 20–25 kg LW increasing to a maximum of 12 litres at 120 kg LW, which corresponded to no more than 1.2% of dietary gross energy.4. In Expt A, CH4 excretion increased linearly with LW, while in Expt B the increase was linear until about 70 kg LW, when it reached a plateau. On average LFL reduced CH, excretion by 23% compared with HFL. When related to dry matter (DM) intake, however, the pigs on LFL excreted 3.1 litres CH4/kg dietary DM and those on HFL 2.5 litres CH4/kg dietary DM, the difference being significant (P < 0.05). In Expt B the inclusion of soya-bean oil in the basal diet (+oil) reduced CH, excretion by 26% compared with the diet without oil (-oil). The pigs receiving the basal diet excreted 5.2 litres CH4/kg DM and the pigs receiving soya-bean oil 4.3 litres CH4/kg DM, the difference being highly significant (P < 0.001). All differences between Expt A and B in CH4 excretion based on DM intake were highly significant (P < 0.001).5. The results are discussed in relation to gas production in ruminants, rats and humans. It is suggested that flatus production may not only be reduced by changing the composition of the dietary carbohydrates, but also by inclusion of a polyunsaturated oil in the diet of simple-stomached animals and humans.


1980 ◽  
Vol 31 (3) ◽  
pp. 279-289 ◽  
Author(s):  
C. W. Holmes ◽  
J. R. Carr ◽  
G. Pearson

ABSTRACTFour diets which varied in crude protein concentration from 140 to 240 g crude protein per kg dry matter were given to gilts in experiment 1, and two diets containing 140 and 200 g crude protein per kg dry matter were given t o boars and barrows in experiment 2. Two levels of feeding were offered in both experiments and energy and nitrogen balances were measured at 30 and 90 kg live weight in both experiments, and also at 50 kg in experiment 1. Nitrogen intake had a small negative influence on energy retention by pigs of all sexes, an effect which was independent of the large positive effect of metabolizable energy intake. The ratio of metabolizable energy concentration to digestible energy concentration decreased in association with increases in crude protein concentration of the diets. The results show that comparisons of feeds on the basis of their digestible energy concentrations would lead to overestimation of the energy values of those containing high protein concentrations. Live weight (or age) and metabolizable energy intake exerted positive influences on the amount of energy retained per kg live-weight gain, whereas nitrogen intake exerted a negative influence. Values for energy retained per kg live-weight gain predicted from multiple regression equations, together with calculated values for maintenance and net efficiency, were used to predict the energy retention and growth rate of pigs in various circumstances.Nitrogen retention increased in association with increases in nitrogen intake for pigs of all sexes at 30 kg live weight; there was also a corresponding increase for boars at 90kg live weight, but not for gilts or barrows at this weight. Boars retained more nitrogen than did barrows at 30 and 90 kg live weight only if given the diet with the higher concentration of protein.Metabolizable energy intake appeared to exert a small positive influence on the nitrogen retention by pigs of all sexes at 90kg live weight; however, it appeared to have no influence on nitrogen retention by pigs at 30kg live weight.


2010 ◽  
Vol 39 (10) ◽  
pp. 2237-2245 ◽  
Author(s):  
Edney Pereira da Silva ◽  
Carlos Bôa-Viagem Rabello ◽  
Luiz Fernando Teixeira Albino ◽  
Jorge Victor Ludke ◽  
Michele Bernardino de Lima ◽  
...  

This research aimed at generating and evaluating prediction equations to estimate metabolizable energy values in poultry offal meal. The used information refers to values of apparent and true metabolizable energy corrected for nitrogen balance (AMEn and TMEn) and for chemical composition of poultry offal meal. The literature review only included published papers on poultry offal meal developed in Brazil, and that had AMEn and TMEn values obtained by the total excreta collection method from growing broiler chickens and the chemical composition in crude protein (CP), ether extract (EE), mineral matter (MM), gross energy (GE), calcium (Ca) and phosphorus (P). The general equation obtained to estimate AMEn values of poultry offal meal was: AMEn = -2315.69 + 31.4439(CP) + 29.7697(MM) + 0.7689(GE) - 49.3611(Ca), R² = 72%. For meals with high fat contents (higher than 15%) and low mineral matter contents (lower than 10%), it is suggest the use of the equation AMEn = + 3245.07 + 46.8428(EE), R² = 76%, and for meals with high mineral matter content (higher than 10%), it is suggest the equations AMEn = 4059.15 - 440.397(P), R² = 82%. To estimate values of TMEn, it is suggested for meals with high mineral matter content the equation: TMEn = 5092.57 - 115.647(MM), R² = 78%, and for those with low contents of this component, the option is the equation: TMEn = 3617.83 - 15.7988(CP) - 18.2323(EE) - 96.3884(MM) + 0.4874(GE), R² = 76%.


1978 ◽  
Vol 90 (1) ◽  
pp. 47-68 ◽  
Author(s):  
K. L. Blaxter ◽  
A. W. Boyne

SUMMARYThe results of 80 calorimetric experiments with sheep and cattle, mostly conducted in Scotland, were analysed using a generalization of the Mitscherlich equation R = B(l–exp(–pG))–l, where R is daily energy retention and G daily gross energy intake, both scaled by dividing by the fasting metabolism. The relations between gross energy and metabolizable energy were also examined. Methods of fitting the Mitscherlich equation and the errors associated with it are presented.It is shown that the gross energy of the organic matter of feed can be estimated from proximate principles with an error of ±2·3% (coefficient of variation) and that provided different classes of feed are distinguished, the metabolizable energy of organic matter can be estimated from gross energy and crude fibre content with an error of ±6·9%. Parameters of the primary equation made with cattle agreed with those made with sheep and there was no evidence of non-proportionality of responses on substitution of feeds in mixtures.The efficiency of utilization of gross energy for maintenance and for body gain of energy was related to the metabolizability of gross energy and, in addition, to fibre or to protein content. Prediction equations are presented which describe these relationships.It is shown that the primary equation can be manipulated to express a number of biological concepts and that its two parameters B and p can be simply derived from estimates of the two efficiency terms for maintenance and production.The results are discussed in relation to the design of feeding systems for ruminant animals and to the derivation of optima in their feeding.


1996 ◽  
Vol 62 (2) ◽  
pp. 337-347 ◽  
Author(s):  
M. Neil ◽  
B. Ogle ◽  
K. Annèr

AbstractEffects of a two-diet system combined withad libitumlactation feeding of sows on food consumption, sow live weight (LW), backfat depth, condition scoring, rebreeding interval, symptoms of agalactia and culling were studied on 60 sows followed for four parities. Feeding regimes were: CR, conventional i.e. restricted during gestation and lactation; SA, a simplified diet offered at a restricted level during gestation and a conventional dietad libitumduring lactation; CA, conventional during gestation and the same dietad libitumduring lactation. During lactation CR sows consumed 5·9 kg food daily (71 MJ metabolizable energy (ME)), whereas SA and CA sows consumed on average 7·0 kg (85 MJ ME), the difference being larger in multiparous than in primiparous sows and larger in the first than in later weeks of lactation. From the second farrowing onward sows on CR treatment were lighter and had thinner backfat and lower condition scores than sows on CA treatment, with sows on SA treatment in between, i.e. approaching the CR sows in the gestation periods and the CA sows in the lactation periods. At first service LW was 130 kg and backfat thickness 14 mm. During the fourth lactation LW averaged 190 kg in CR sows and around 220 kg for SA and CA sows, and backfat thickness was 11 mm in CR sows and around 16 mm in SA and CA sows. SA sows tended to rebreed earlier after weaning than did CR or CA sows. CA sows and in particular SA sows had higher incidences of agalactia symptoms and higher rectal temperatures post partum than CR sows. The culling rates did not differ between feeding regimes, although the predominant causes for culling did, being shoulder lesions and abscesses in thin CR sows and leg disorders in SA and CA sows. At the end of the experiment, however, more SA sows than others were retained in the experimental herd. It was concluded that the SA feeding regime was superior in terms of sow performance, despite an increased incidence of agalactia symptoms.


1983 ◽  
Vol 100 (3) ◽  
pp. 717-722
Author(s):  
J. B. Moran

SUMMARYIndonesian Ongole and swamp buffalo bulls that had previously been given 0, 1·2, 2·4, 3·6 or 4·8 kg/head/day rice bran plus ad libitum elephant grass were slaughtered after 161 days feeding. Abdominal depot fat, full and empty reticulo-rumen and cold carcass weights were recorded. Various carcass variables were measured and the 9–10–11 rib joints were dissected into bone, muscle and fat. Carcass gross energy was calculated from rib-fat content using previously determined regression equations. Feed efficiency was expressed in terms of the ratios of live-weight gain or carcass-energy accretion to metabolizable energy available for growth.Increasing supplementation with rice bran resulted in larger abdominal fat depots, higher dressing percentages, increased carcass fatness (and hence carcass gross energy) and improved rib muscle to bone ratios. Carcass conformation was unaffected by dietary treatment. When feed efficiency was expressed per unit live-weight gain, there was a decrease with increasing rice-bran feeding. Feed efficiency, expressed per unit of carcass energy accretion, improved with rice-bran supplementation and was generally higher in buffalo than in Ongole bulls. Dietary and species differences in feed efficiency could be primarily explained by the differential energy cost of deposition of, and the availability of energy from, carcass protein and lipid.


Sign in / Sign up

Export Citation Format

Share Document