Agricultural bamboo leaf waste as carbon precursor for the preparation of Cu-Al/biomass fiber adsorption and its application in the removal of ammonia nitrogen pollutants from domestic wastewater

Author(s):  
Junjie Yuan ◽  
Yao Zhu ◽  
Jizhang Wang ◽  
Zhigang Liu ◽  
Jieyi Wu ◽  
...  
1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


2015 ◽  
Vol 752-753 ◽  
pp. 232-237
Author(s):  
Rafidah binti Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Ain Nabila Abdul Talib

Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. Excessive concentrations in the water body can cause excessive growth of algae and other plants, leading to accelerate eutrophication of lakes, and occasional depletion of dissolved oxygen. To remove nitrogen conventionally from domestic wastewater requires a high cost technology due to consumption of chemicals, high operational and maintenance cost. Therefore, an alternative low cost treatment technology particularly for nutrient removal including nitrogen removal system has been developed to improve the final effluent quality that is an aerated rock filter system. However, the optimization study under warm climate has not yet been developed. Hence, the present study was carried out to investigate the removal of ammonia nitrogen (AN) from domestic wastewater through nitrification process using a lab-scale vertical aerated limestone filter. Domestic wastewater sample used in this study was collected from Taman Bukit Perdana Wastewater Treatment Plant (WWTP), Batu Pahat, Johor owned by IWK. The experiment has been carried out for 10 weeks. The influent and effluent of the vertical aerated limestone filter system have been sampled and analyzed on biweekly basis for selected parameters including AN, Total Kjedhal Nitrogen (TKN), pH, alkalinity, temperature and dissolved oxygen to monitor the effectiveness of the filter. Results from this study show that nitrification process has took place within the aerated limestone filter as the results from laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of AN was ranged from 85 % to 92 % and the removal percentage of TKN was ranged from 83.52 % - 91.67 %. The temperature was in the average of 26.3oC±0.75, pH value average of , DO was from 6.64 mg/L to 7.75 mg/L , and the alkalinity was from 15 to 110 mg / l as CaCO3 . Therefore, from this study it can be concluded that aerated rock filter system has high potential in removing AN and TKN. It is also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


2011 ◽  
Vol 250-253 ◽  
pp. 3392-3396
Author(s):  
Yu Jia Song ◽  
Hui Qing Liu

The discharge of urban sewage and agricultural non-point source pollutants is the main reason causing eutrophication in gullies in most cities of northern China. Based on a careful analysis on the ecological structure and ecological characteristics of a gully, this article preliminarily studies the interception and degradation mechanisms of nitrogen pollutants by the gully. Meanwhile, to take gullies in Changchun as the object of the study, this article carries out an experiment on the interception effect of nitrogen pollutants by gullies. This experiment respectively establishes a control section in the upper and lower reaches of a gully, and takes water samples four times in each section from May to August to determine total nitrogen, total phosphorus, nitrate nitrogen, ammonia nitrogen and salinity. The result shows: the gully plays some role in the interception of pollutants; total phosphorus accounts for the largest interception in pollutants in the experimented gully section, with the relative interception rate of 27.46%, followed by ammonia nitrogen, with the interception rate of 21.80%, which is the result of the combined effects of aquatic plants, microorganisms and sediment in the gully.


2012 ◽  
Vol 65 (4) ◽  
pp. 713-720 ◽  
Author(s):  
Ying-Hua Li ◽  
Hai-Bo Li ◽  
Jing Pan ◽  
Xin Wang ◽  
Tie-Heng Sun

This study was to investigate domestic treatment efficiency of a subsurface wastewater infiltration (SWI) system over time. The performances of a young SWI system (in Shenyang University, China, fully operated for one year) and a mature SWI system (in Shenyang Normal University, China, fully operated for seven years) under the same operation mode were contrasted through field-scale experiments for one year. The performance assessment for these systems is based on physical and chemical parameters collected. The removal efficiencies within the young system were relatively high if compared with the mature one: for biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 95.0, 89.1, 98.1, 87.6 and 98.4%, respectively. However, the removal efficiencies decreased over time. The mean removal efficiencies for the mature SWI system were as follows: BOD (89.6%), COD (87.2%), SS (82.6%), NH3-N (69.1%) and TP (74.4%). The results indicate that the mature SWI system successfully removed traditional pollutants such as BOD from domestic wastewater. However, the nutrient reduction efficiencies (including NH3-N and TP) decreased after seven years of operation of the mature SWI system. Meanwhile, the SWI system did not decrease the receiving surface water quality.


2013 ◽  
Vol 68 (5) ◽  
pp. 1144-1150 ◽  
Author(s):  
Anna Mietto ◽  
Maurizio Borin ◽  
Michela Salvato ◽  
Paolo Ronco ◽  
Nicola Tadiello

The performance of three integrated wetland treatment plants (horizontal sub-surface flow (h-SSF) and floating treatment wetland (FTW) with differentiated primary treatments) designed for treating domestic wastewater was investigated, monitoring total (TN), nitrate (NO3-N), nitrite (NO2-N) and ammonia nitrogen (NH4-N), total (TP) and phosphate phosphorus (PO4-P), chemical (COD) and biological oxygen demand (BOD5), and dissolved oxygen (DO) at the inlet and outlet of each wetland section from February 2011 to June 2012. Sediments settled in the FTW were collected and analyzed. The growth of plants in each system was also monitored, observing their general conditions. The chemical–physical characteristics of the pretreated domestic wastewater depended on the primary treatment installed. During the monitoring period we observed different reduction performance of the wetland sector in the three sites. In general, the wetland systems demonstrated the capacity to reduce TN, COD, BOD5 and Escherichia coli, whereas NO3-N and NH4-N removal was strictly influenced by the chemical conditions, in particular DO concentration, in the h-SSF and FTW. Vegetation (Phragmites australis, Alnus glutinosa and Salix eleagnos) was well established in the h-SSF as well as in the floating elements (Iris pseudacorus), although there were some signs of predation. FTW is a relatively novel wetland system, so the results obtained from this study can pave the way for the application of this technology.


2014 ◽  
Vol 69 (6) ◽  
pp. 1267-1274 ◽  
Author(s):  
M. Capodici ◽  
D. Di Trapani ◽  
G. Viviani

Aged or mature leachate, produced by old landfills, can be very refractory; for this reason mature leachate is difficult to treat alone, but it can be co-treated with sewage or domestic wastewater. The aim of the study was to investigate the feasibility of leachate co-treatment with synthetic wastewater, in terms of process performance and biomass activity, by means of respirometric techniques. Two sequencing batch reactors (SBRs), named SBR1 and SBR2, were fed with synthetic wastewater and two different percentages of landfill leachate (respectively 10% and 50% v v−1 in SBR1 and SBR2). The results showed good chemical oxygen demand (COD) removal efficiency for both reactors, with average COD removals equal to 91.64 and 89.04% respectively for SBR1 and SBR2. Furthermore, both SBRs showed good ammonia-nitrogen (AN) removal efficiencies, higher than 60%, thus confirming the feasibility of leachate co-treatment with a readily biodegradable wastewater. Significant respiration rates were obtained for the heterotrophic population (average values of maximum oxygen uptake rate equal to 37.30 and 56.68 mg O2 L−1 h−1 respectively for SBR1 and SBR2), thus suggesting the feasibility of leachate co-treatment with synthetic wastewater.


2020 ◽  
Author(s):  
Silambarasi Mooralitharan ◽  
Zarimah Hanafiah ◽  
Teh Sabariah Abd Manan ◽  
Hassimi Hasan ◽  
Henritte Jensen ◽  
...  

Abstract The fungi-based technology, wild-Serbian Ganoderma lucidum (WSGL) as myco-alternative to existing conventional microbial-based wastewater treatment is introduced in this study as a potential alternative treatment. The mycoremediation is highly persistent for its capability to oxidatively breakdown pollutant substrates and widely researched for its medicinal properties. Utilizing the non-hazardous properties and high degradation performance of WSGL, this research aims to find optimum conditions and model the mycoremediation treatment design for Chemical Oxygen Demand (COD) and Ammonia Nitrogen (AN) removal in domestic wastewater via response surface methodology (RSM). Combined process variables were temperature (⁰C) (Model 1) and the volume of mycelial pellets (%) (Model 2) against treatment time (hour). Response variables for these two sets of central composite design (CCD) were the removal efficiencies of COD (%) and AN (%). The regression line fitted well with the data with R2 values of 0.9840 (Model 1-COD), 0.9477 (Model 1-AN), 0.9988 (Model 2-COD) and 0.9990 (Model 2-AN). The lack of fit test gives the highest value of Sum of Squares equal to 9494.91 (Model 1- COD), 9701.68 (Model 1-AN), 23786.55 (Model 2-COD) and 13357.02 (Model 2-AN), with probability F values less than 0.05 showing significant models. The optimum conditions were established corresponding to the percentage of COD and AN removal obtained were 95.1% and 96.3%, accordingly at the optimum temperature 25°C at the treatment time of 24 h, meanwhile 0.25% of mycelial pellet with 76.0% and 78.4% COD and AN removal, respectively. The high performance achieved demonstrates that the mycoremediation of G. lucidum is highly potential as part of the wastewater treatment system in treating domestic wastewater of high organic loadings.


2020 ◽  
Vol 38 (10) ◽  
pp. 1176-1184
Author(s):  
Xuqin Pan ◽  
Maonan Chen ◽  
Fan Wang ◽  
Qibin Li

The effect of biochar on the removal of organic and nitrogen contaminants from leachate in a semi-aerobic aged refuse biofilter (SAARB) was investigated. A preset amount of biochar was mixed with the aged refuse to explore the enhancement ability of pollutant removal by characterizing the leachate effluent and gas. The results showed that biochar contributed to the removal of organic and nitrogen pollutants from the leachate and that increasing the amount of biochar added led to higher colour number, chemical oxygen demand, ammonia nitrogen, and total nitrogen removal efficiencies. Furthermore, the addition of biochar significantly increased the removal of large molecule organic pollutants from the leachate. The improved removal of organics was due to the considerable number of surface functional groups and the large surface area of the biochar, which effectively absorbed and removed a significant amount of the organic matter from the leachate. Biochar elevated the dissolved oxygen concentration in the semi-aerobic system, which facilitated the completion of the nitrification reaction. It also promoted denitrification by acting as a supplementary carbon source. The nitrous oxide (N2O) emissions decreased as the amount of biochar added increased. When the biochar proportion reached 3%, the N2O emission was only 1.11% of the original total nitrogen and the di-nitrogen emission was 19.61%. The findings of this study can be used to improve the treatment of leachate using biochar combined with a SAARB.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zarimah Mohd Hanafiah ◽  
Wan Hanna Melini Wan Mohtar ◽  
Hassimi Abu Hasan ◽  
Henriette Stokbro Jensen ◽  
Anita Klaus ◽  
...  

Abstract The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia–nitrogen (NH3–N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3–N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3–N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3–N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.


2015 ◽  
Vol 773-774 ◽  
pp. 1350-1354
Author(s):  
Rafidah Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Siti Zahirah Haron

Excessive nitrogen in domestic wastewater discharge accelerates eutrophication in an aquatic ecosystem. To treat wastewater high in nitrogen conventionally are more expensive, complex and generate high amount of sludge. In line with this situation, rock filters (RF) emerged as one of attractive natural wastewater treatment method to treat wastewater high in nutrient because this filter system is easier to maintain, using low-cost filter media, and environmentally-friendly technology. However, studies on the removal of nitrogen in the system are still limited due to nitrification study under warm climate. Thus, an aerated rock filter system has been designed in this study to remove ammonia nitrogen from domestic wastewater using the recommended hydraulic loading rate in warm climate condition. The laboratory aerated rock filter system has been in operated for 2 months with 5 weeks of sampling. The filter influent and effluent samples have been collected and analyzed twice a week for Total Kjeldhal Nitrogen (TKN), ammonia nitrogen (AN), nitrates ,pH, temperature, DO and alkalinity to monitor the filter performance in removing nitrogen. Results from the laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of ammonia nitrogen was ranged from 66.05 % to 91.30 % and the removal percentage of TKN was ranged from 63.23 % to 87.68 %. The temperature was in the range of 25°C to 27.5°C, pH value was in the range of 6.34 to 8.04, DO was from 6.64 mg/L to 7.75 mg/L, and the alkalinity was from 15 to 110 as mg /L CaCO3. Therefore, from this laboratory experiment it can be concluded that aerated rock filter system has high potential in removing AN and TKN. The system also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


Sign in / Sign up

Export Citation Format

Share Document