Protective Effects of Salicylic Acid and Vitamin C on Sulfur Dioxide-Induced Lipid Peroxidation in Mice

2008 ◽  
Vol 20 (9) ◽  
pp. 865-871 ◽  
Author(s):  
Huiping Zhao ◽  
Xin Xu ◽  
Jie Na ◽  
Lin Hao ◽  
Linli Huang ◽  
...  
2000 ◽  
Vol 41 (4) ◽  
pp. 405-411 ◽  
Author(s):  
LUSÂNIA M. GREGGI ANTUNES ◽  
JOANA D'ARC C. DARIN ◽  
MARIA DE LOURDES P. BIANCHI

Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 168
Author(s):  
Isabel Torres-Cuevas ◽  
Iván Millán ◽  
Miguel Asensi ◽  
Máximo Vento ◽  
Camille Oger ◽  
...  

The loss of redox homeostasis induced by hyperglycemia is an early sign and key factor in the development of diabetic retinopathy. Due to the high level of long-chain polyunsaturated fatty acids, diabetic retina is highly susceptible to lipid peroxidation, source of pathophysiological alterations in diabetic retinopathy. Previous studies have shown that pterostilbene, a natural antioxidant polyphenol, is an effective therapy against diabetic retinopathy development, although its protective effects on lipid peroxidation are not well known. Plasma, urine and retinas from diabetic rabbits, control and diabetic rabbits treated daily with pterostilbene were analyzed. Lipid peroxidation was evaluated through the determination of derivatives from arachidonic, adrenic and docosahexaenoic acids by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Diabetes increased lipid peroxidation in retina, plasma and urine samples and pterostilbene treatment restored control values, showing its ability to prevent early and main alterations in the development of diabetic retinopathy. Through our study, we are able to propose the use of a derivative of adrenic acid, 17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF, for the first time, as a suitable biomarker of diabetic retinopathy in plasmas or urine.


Diseases ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 46
Author(s):  
Feng Xu ◽  
Yawei Wen ◽  
Xinge Hu ◽  
Tiannan Wang ◽  
Guoxun Chen

The newly found SARS-CoV-2 has led to the pandemic of COVID-19, which has caused respiratory distress syndrome and even death worldwide. This has become a global public health crisis. Unfortunately, elders and subjects with comorbidities have high mortality rates. One main feature of COVID-19 is the cytokine storm, which can cause damage in cells and tissues including the kidneys. Here, we reviewed the current literature on renal impairments in patients with COVID-19 and analyzed the possible etiology and mechanisms. In addition, we investigated the potential use of vitamin C for the prevention of renal injury in those patients. It appears that vitamin C could be helpful to improve the outcomes of patients with COVID-19. Lastly, we discussed the possible protective effects of vitamin C on renal functions in COVID-19 patients with existing kidney conditions.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 923
Author(s):  
Yuan Yuan ◽  
Yanyu Zhai ◽  
Jingjiong Chen ◽  
Xiaofeng Xu ◽  
Hongmei Wang

Kaempferol has been shown to protect cells against cerebral ischemia/reperfusion injury through inhibition of apoptosis. In the present study, we sought to investigate whether ferroptosis is involved in the oxygen-glucose deprivation/reperfusion (OGD/R)-induced neuronal injury and the effects of kaempferol on ferroptosis in OGD/R-treated neurons. Western blot, immunofluorescence, and transmission electron microscopy were used to analyze ferroptosis, whereas cell death was detected using lactate dehydrogenase (LDH) release. We found that OGD/R attenuated SLC7A11 and glutathione peroxidase 4 (GPX4) levels as well as decreased endogenous antioxidants including nicotinamide adenine dinucleotide phosphate (NADPH), glutathione (GSH), and superoxide dismutase (SOD) in neurons. Notably, OGD/R enhanced the accumulation of lipid peroxidation, leading to the induction of ferroptosis in neurons. However, kaempferol activated nuclear factor-E2-related factor 2 (Nrf2)/SLC7A11/GPX4 signaling, augmented antioxidant capacity, and suppressed the accumulation of lipid peroxidation in OGD/R-treated neurons. Furthermore, kaempferol significantly reversed OGD/R-induced ferroptosis. Nevertheless, inhibition of Nrf2 by ML385 blocked the protective effects of kaempferol on antioxidant capacity, lipid peroxidation, and ferroptosis in OGD/R-treated neurons. These results suggest that ferroptosis may be a significant cause of cell death associated with OGD/R. Kaempferol provides protection from OGD/R-induced ferroptosis partly by activating Nrf2/SLC7A11/GPX4 signaling pathway.


2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


1994 ◽  
Vol 17 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Se-Young Choung ◽  
Jae-Myeong Kong

2015 ◽  
Vol 93 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Chandrabose Sureka ◽  
Thiyagarajan Ramesh ◽  
Vavamohaideen Hazeena Begum

The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190–220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.


Sign in / Sign up

Export Citation Format

Share Document