Supply chain reconfiguration opportunities arising from additive manufacturing technologies in the digital era

2019 ◽  
Vol 30 (7) ◽  
pp. 510-521 ◽  
Author(s):  
Konstantinos Tziantopoulos ◽  
Naoum Tsolakis ◽  
Dimitrios Vlachos ◽  
Loukas Tsironis
2019 ◽  
Vol 28 (2) ◽  
pp. 174-188 ◽  
Author(s):  
Christina Öberg

Purpose Additive manufacturing, that is, layer-based manufacturing technologies, is thought to change supply chain operations from global to local, while also affecting design processes and product structures. As this transformation happens, a power struggle among various actors relating themselves to additive manufacturing has emerged. The purpose of this paper is to discuss and explain the development of additive manufacturing from a power dependence point of view. Design/methodology/approach The paper is based on data collected from a number of seminars hosting a total of 620 industry experts representing 102 companies in the area, and reflecting every step of the supply chain. Findings The paper points out how measures to deal and create power imbalances occur also related to indirect parties, and how the disruptive character of the supply chain leads to exercised power. Originality/value The power struggle provides new insights into how an emerging technology is realised and the effect of protectionism on such attempts. Specifically related to additive manufacturing, the paper illustrates the business side from various actors’ point of view, which adds to technological perspectives on additive manufacturing, as well as studies viewing the supply chain from a bird’s-eye perspective.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 409
Author(s):  
Antonio Del Prete ◽  
Teresa Primo

This paper reports the study and development case of an innovative application of the Cloud Manufacturing paradigm. Based on the definition of an appropriate web-based application, the infrastructure is able to connect the possible client requests and the relative supply chain product/process development capabilities and then attempt to find the best available solutions. In particular, the main goal of the developed system, called AMSA (Additive Manufacturing Spare parts market Application), is the definition of a common platform to supply different kinds of services that have the following common reference points in the Additive Manufacturing Technologies (DFAM, Design For Additive Manufacturing): product development, prototypes, or small series production and reverse engineering activities to obtain Computer-Aided Design (CAD) models starting from a physical object. The definition of different kinds of services allows satisfying several client needs such as innovative product definition characterized by high performance in terms of stiffness/weight ratio, the possibility of manufacturing small series, such as in the motorsport field, and the possibility of defining CAD models for the obsolete parts for which the geometrical information is missed. The AMSA platform relies on the reconfigurable supply chain that is dynamic, and it depends on the client needs. For example, when the client requires the manufacture of a small series of a component, AMSA allows the technicians to choose the best solutions in terms of delivery time, price, and logistics. Therefore, the suppliers that contribute to the definition of the dynamic supply chain have an important role. For these reasons, the AMSA platform represents an important and innovative tool that is able to link the suppliers to the customers in the best manner in order to obtain services that are characterized by a high-performance level. Therefore, a provisional model has been implemented that allows filtering the technologies according to suitable performance indexes. A specific aspect for which AMSA can be considered unique is related with the given possibility to access Design for Additive Manufacturing Services through the Web in accordance with the possible additive manufacturing technologies.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3888
Author(s):  
Johanna Maier ◽  
Christian Vogel ◽  
Tobias Lebelt ◽  
Vinzenz Geske ◽  
Thomas Behnisch ◽  
...  

Generative hybridization enables the efficient production of lightweight structures by combining classic manufacturing processes with additive manufacturing technologies. This type of functionalization process allows components with high geometric complexity and high mechanical properties to be produced efficiently in small series without the need for additional molds. In this study, hybrid specimens were generated by additively depositing PA6 (polyamide 6) via fused layer modeling (FLM) onto continuous woven fiber GF/PA6 (glass fiber/polyamide 6) flat preforms. Specifically, the effects of surface pre-treatment and process-induced surface interactions were investigated using optical microscopy for contact angle measurements as well as laser profilometry and thermal analytics. The bonding characteristic at the interface was evaluated via quasi-static tensile pull-off tests. Results indicate that both the bond strength and corresponding failure type vary with pre-treatment settings and process parameters during generative hybridization. It is shown that both the base substrate temperature and the FLM nozzle distance have a significant influence on the adhesive tensile strength. In particular, it can be seen that surface activation by plasma can significantly improve the specific adhesion in generative hybridization.


2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 485
Author(s):  
Xufeng Li ◽  
Jian Lin ◽  
Zhidong Xia ◽  
Yongqiang Zhang ◽  
Hanguang Fu

Wire-arc additive manufacturing (WAAM) has been considered as one of the potential additive-manufacturing technologies to fabricate large components. However, its industrial application is still limited by the existence of stress and distortion. During the process of WAAM, the scanning pattern has an important influence on the temperature field, distortion and final quality of the part. Four kinds of deposition patterns, including sequence, symmetry, in–out and out–in, were designed to deposit H13 steel in this study. An in situ measurement system was set up to record the temperature history and the progress of accumulated distortion of the parts during deposition. An S value was proposed to evaluate the distortion of the substrate. It was shown that the distortion of the part deposited by sequence was significantly larger than those of other parts. The distortion deposited by the out–in pattern decreased by 68.6% compared with sequence. The inherent strain method and strain parameter were introduced to expose the mechanism of distortion reduction caused by pattern variation.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Ruben Foresti ◽  
Benedetta Ghezzi ◽  
Matteo Vettori ◽  
Lorenzo Bergonzi ◽  
Silvia Attolino ◽  
...  

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 939
Author(s):  
Mukti Chaturvedi ◽  
Elena Scutelnicu ◽  
Carmen Catalina Rusu ◽  
Luigi Renato Mistodie ◽  
Danut Mihailescu ◽  
...  

Wire arc additive manufacturing (WAAM) is a fusion manufacturing process in which the heat energy of an electric arc is employed for melting the electrodes and depositing material layers for wall formation or for simultaneously cladding two materials in order to form a composite structure. This directed energy deposition-arc (DED-arc) method is advantageous and efficient as it produces large parts with structural integrity due to the high deposition rates, reduced wastage of raw material, and low consumption of energy in comparison with the conventional joining processes and other additive manufacturing technologies. These features have resulted in a constant and continuous increase in interest in this modern manufacturing technique which demands further studies to promote new industrial applications. The high demand for WAAM in aerospace, automobile, nuclear, moulds, and dies industries demonstrates compatibility and reflects comprehensiveness. This paper presents a comprehensive review on the evolution, development, and state of the art of WAAM for non-ferrous materials. Key research observations and inferences from the literature reports regarding the WAAM applications, methods employed, process parameter control, optimization and process limitations, as well as mechanical and metallurgical behavior of materials have been analyzed and synthetically discussed in this paper. Information concerning constraints and enhancements of the wire arc additive manufacturing processes to be considered in terms of wider industrial applicability is also presented in the last part of this paper.


Sign in / Sign up

Export Citation Format

Share Document