scholarly journals Disruption of the MyoD/p21 Pathway in Rhabdomyosarcoma

Sarcoma ◽  
1997 ◽  
Vol 1 (3-4) ◽  
pp. 135-141 ◽  
Author(s):  
Michael Weintraub ◽  
Thea Kalebic ◽  
Lee J. Helman ◽  
Kishor G. Bhatia

Purpose. Rhabdomyosarcoma (RMS) is an embryonal tumor thought to arise from skeletal muscle cells that fail to differentiate terminally. The majority of RMSs express MyoD, a protein essential to the differentiation of skeletal muscle. It was recently shown that during myogenesis, MyoD activates the expression of the cyclin-dependent kinase inhibitor (CDKi), p21, which itself plays a critical role in normal muscle development. To investigate the integrity of the MyoD/p21 pathway in RMS, we analyzed p21 and its relationship to MyoD expression in RMS.Methods. A panel of RMS samples was assembled from primary biopsies and from cell lines. Integrity of p21 was analyzed by single-strand conformation polymorphism (SSCP) and sequencing. Expression of p21 and MyoD was determined by Northern blot analysis, and the ability of exogenous p21 to arrest the cell cycle of RMS cell line was determined by transfection studies.Results. Our analysis indicates that although p21 is wild type in RMS, there is an inverse correlation between the levels of p21 and MyoD in these tumors. Tumors that express significant amounts of MyoD fail to express p21. This does not appear to be the result of mutations within the potential CACGTG sites present in the p21 promoter region or in the coding region of p21. An additional group of RMSs express very high levels of p21 but express little, if any, MyoD. Furthermore, RD, a RMS cell line which expresses high levels of endogenous p21, undergoes withdrawal from the cell cycle following forced expression of p21, suggesting that the pathway which would lead to G1arrest from endogenous p21 activity is defective.Discussion. These data suggest that the interaction between p21 and MyoD is defective in RMS although the precise nature of the defect remains to be elucidated.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Despoina Mademtzoglou ◽  
Yoko Asakura ◽  
Matthew J Borok ◽  
Sonia Alonso-Martin ◽  
Philippos Mourikis ◽  
...  

Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.


2002 ◽  
Vol 1 (4) ◽  
pp. 247-256 ◽  
Author(s):  
Hana Kovarova ◽  
Petr Halada ◽  
Petr Man ◽  
Petr Dzubak ◽  
Marian Hajduch

The purpose of this study was to use the proteomics approach, which is based on high resolution two-dimensional electrophoresis coupled with multivariate correspondence analysis and mass spectrometry, to classify objectively the biochemical basis of the anti-cancer activity of the synthetic cyclin-dependent kinase inhibitor, bohemine (BOH). The changes in the cell cycle and corresponding protein composition of the A549 human lung adenocarcinoma cell line after treatment with BOH were evaluated and proteins differentially expressed in the BOH treated A549 cells, compared to the untreated A549 counterparts, were selected. Thirteen of these candidate proteins associated with the drug effects in vitro were identified by mass spectrometry. Many of these proteins fall into one of three functional categories: i) metabolic pathways (glycolysis, nucleic acid synthesis and NADPH production), ii) stress response and protein folding, and iii) cytoskeleton and exocytosis. Changes in protein expression patterns corresponded to a higher resistance of A549 lung carcinoma cells to BOH when compared to the CEM leukaemia cell line. These protein changes reflect a fine balance of the resistant versus the susceptible phenotype in response to the drug. Since BOH is a selective cyclin-dependent kinase inhibitor, changes in the protein expression pattern can be more generally associated with cell cycle regulation as evidenced by inhibition of cell cycling in A549 cells. Our conclusions further underline the importance of cell cycle control in both the cellular signalling and metabolic pathways.


1998 ◽  
Vol 18 (2) ◽  
pp. 1055-1064 ◽  
Author(s):  
Jennifer S. Lanni ◽  
Tyler Jacks

ABSTRACT The p53 tumor suppressor gene product is known to act as part of a cell cycle checkpoint in G1 following DNA damage. In order to investigate a proposed novel role for p53 as a checkpoint at mitosis following disruption of the mitotic spindle, we have used time-lapse videomicroscopy to show that both p53+/+ and p53−/− murine fibroblasts treated with the spindle drug nocodazole undergo transient arrest at mitosis for the same length of time. Thus, p53 does not participate in checkpoint function at mitosis. However, p53 does play a critical role in nocodazole-treated cells which have exited mitotic arrest without undergoing cytokinesis and have thereby adapted. We have determined that in nocodazole-treated, adapted cells, p53 is required during a specific time window to prevent cells from reentering the cell cycle and initiating another round of DNA synthesis. Despite having 4N DNA content, adapted cells are similar to G1 cells in that they have upregulated cyclin E expression and hypophosphorylated Rb protein. The mechanism of the p53-dependent arrest in nocodazole-treated adapted cells requires the cyclin-dependent kinase inhibitor p21, as p21−/−fibroblasts fail to arrest in response to nocodazole treatment and become polyploid. Moreover, p21 is required to a similar extent to maintain cell cycle arrest after either nocodazole treatment or irradiation. Thus, the p53-dependent checkpoint following spindle disruption functionally overlaps with the p53-dependent checkpoint following DNA damage.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 752-761 ◽  
Author(s):  
Dong Fu ◽  
Des R. Richardson

Abstract Iron (Fe) plays a critical role in proliferation, and Fe deficiency results in G1/S arrest and apoptosis. However, the precise role of Fe in cell-cycle control remains unclear. We observed that Fe depletion increased the mRNA of the universal cyclin-dependent kinase inhibitor, p21CIP1/WAF1, while its protein level was not elevated. This observation is unique to the G1/S arrest seen after Fe deprivation, as increased p21CIP1/WAF1 mRNA and protein are usually found when arrest is induced by other stimuli. In this study, we examined the posttranscriptional regulation of p21CIP1/WAF1 after Fe depletion and demonstrated that its down-regulation was due to 2 mechanisms: (1) inhibited translocation of p21CIP1/WAF1 mRNA from the nucleus to cytosolic translational machinery; and (2) induction of ubiquitin-independent proteasomal degradation. Iron chelation significantly (P < .01) decreased p21CIP1/WAF1 protein half-life from 61 (± 4 minutes; n = 3) to 28 (± 9 minutes, n = 3). Proteasomal inhibitors rescued the chelator-mediated decrease in p21CIP1/WAF1 protein, while lysosomotropic agents were not effective. In Fe-replete cells, p21CIP1/WAF1 was degraded in an ubiquitin-dependent manner, while after Fe depletion, ubiquitin-independent proteasomal degradation occurred. These results are important for considering the mechanism of Fe depletion–mediated cell-cycle arrest and apoptosis and the efficacy of chelators as antitumor agents.


1993 ◽  
Vol 106 (4) ◽  
pp. 1139-1152 ◽  
Author(s):  
W.K. Song ◽  
W. Wang ◽  
H. Sato ◽  
D.A. Bielser ◽  
S.J. Kaufman

We recently reported the cloning and sequencing of the alpha 7 integrin chain and its regulated expression during the development of skeletal muscle (Song et al. (1992) J. Cell Biol. 117, 643–657). The alpha 7 chain is expressed during the development of the myogenic lineage and on adult muscle fibers and this suggests that it participates in multiple and diverse functions at different times during muscle development. One interesting portion of this isoform is its cytoplasmic domain; comprised of 77 amino acids it is the largest in the alpha chains thus reported. In these experiments we begin to study the potential functions of the alpha 7 cytoplasmic domain by analyzing homologies between the rat and human sequences, by immunologic studies using an anti-cytoplasmic domain antiserum, and by identifying two alternate forms. In keeping with the nomenclature used to describe the alpha 3 and alpha 6 alternate cytoplasmic domains, we refer to the originally reported species as alpha 7B and the two additional forms as alpha 7A and alpha 7C. These three cytoplasmic domains likely arise as a consequence of alternate splicing. A splice site at the junctions of the transmembrane and cytoplasmic domains is used to generate the alpha 3, alpha 6 and alpha 7 A and B forms. The alpha 7A form RNA contains an additional 113 nucleotides compared to the B form, and a common coding region in the A and B form RNAs is used in alternate reading frames. Part of the coding region of alpha 7B appears to be used as the 3′-untranslated region of the alpha 7A form. The alpha 7C mRNA is 595 nucleotides smaller than the alpha 7B RNA and part of the 3′-untranslated region of the alpha 7B isoform is used as coding sequence in alpha 7C. There is developmental specificity in expression of these alternate mRNAs: alpha 7A and alpha 7C transcripts are found upon terminal myogenic differentiation whereas alpha 7B is present earlier in replicating cells and diminishes upon differentiation. We suggest this selective expression of the alpha 7 cytoplasmic domains underlies the diversity in function of the alpha 7 beta 1 integrin at different stages of muscle development. Immunochemical analyses indicate that the alpha 7B cytoplasmic domain undergoes a change in conformation in response to binding laminin or upon crosslinking initiated with antibody reactive with the integrin extracellular domain. Crosslinking also promotes association of the integrin with the cell cytoskeleton.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 109 (7) ◽  
pp. 1759-1764
Author(s):  
F. Depoortere ◽  
J.E. Dumont ◽  
P.P. Roger

In different systems, cAMP either blocks or promotes cell cycle progression in mid to late G1 phase. Dog thyroid epithelial cells in primary culture constitute a model of positive control of DNA synthesis initiation and G0-S pre-replicative phase progression by cyclic AMP (cAMP) as a second messenger for thyrotropin (TSH). We report here that TSH markedly increases the expression of p27kip1, the inhibitor of the cell cycle and cyclin-dependent kinases. This effect was prevented by the concomitant administration of the cAMP-independent mitogens, epidermal growth factor (EGF)+serum. EGF+serum also slightly inhibited the weak basal accumulation of p27kip1. Nevertheless, in the case of stimulation by TSH alone, the cAMP-dependent cell cycle progression was fully compatible with the enhanced expression of p27kip1. This observation is paradoxical since a decrease of p27kip1 is generally associated with growth stimulation in other systems, and since a similar cAMP-dependent increase of p27kip1 in macrophages has been found responsible for mid-G1 cell cycle arrest. The opposite regulation of p27kip1 in response to TSH or EGF+serum in dog thyroid epithelial cells suggests a major difference at mid to late G1 stages between cAMP-dependent and cAMP-independent mitogenic pathways.


Sign in / Sign up

Export Citation Format

Share Document