scholarly journals The Effect of Heat Treatment on Chalcopyrite

2003 ◽  
Vol 12 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. Sahyoun ◽  
S. W. Kingman ◽  
N. A. Rowson

The influence of conventional heat treatment and microwave radiation on chalcopyrite was investigated. There was a significant increase in the proportion of material recovered to magnetic fraction and magnetic susceptibility with conventional heating time. XRD analysis detected phase changes in conventional heat-treated chalcopyrite, which increases the magnetic susceptibility of the ore and enables its effective magnetic separation, which is impossible to achieve in its original state.With microwave treatment, the magnetic susceptibility increases and the proportion of material recovered to magnetic fraction on the induced rolls is also increased. However, XRD analysis failed to detect any phase changes. A possible explanation for this observed behaviour is that the more magnetic component that has been formed by microwave treatment is below the threshold of detection of the XRD analyser. Taking into account that results from the froth flotation tests indicated that % weight fraction in the concentrate decreases with microwave exposure time, the change might be due to a surface effect.

1996 ◽  
Vol 59 (8) ◽  
pp. 889-892 ◽  
Author(s):  
ROSINA LOPEZ-FANDIÑO ◽  
MAR VILLAMIEL ◽  
NIEVES CORZO ◽  
AGUSTIN OLANO

The effect of continuous-flow microwave treatment of milk was estimated by using indicators of the heat treatment intensity (β-lactoglobulin denaturation, inactivation of alkaline phosphatase and lactoperoxidase). Results were compared with those obtained using a conventional process having the same heating, holding, and cooling phases. Continuous microwave treatment proved to be an effective system for pasteurizing milk, with the inclusion of a holding phase to maintain the time and temperature conditions required. At high pasteurization temperatures, the extent of thermal denaturation observed with the microwave treatment was lower than that obtained with the conventional system. This result could be attributed to a better heat distribution and the lack of hot surfaces contacting the milk in the case of the microwave unit.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guozhen Zhao ◽  
Jianhua Liu ◽  
Lei Xu ◽  
Shenghui Guo

Abstract The effects of the conventional heating method and the microwave heating method on polyacrylonitrile-based fibres in the temperature range of 180–280 °C were investigated. Fourier transform infrared spectroscopy, X-ray wide-angle scattering, Raman spectroscopy, energy-dispersive spectrometer, scanning electron microscopy and bulk density were used to characterise the properties of the samples. Results show that the microwave heating method can shorten the pre-oxidation time, reduce pre-oxidation temperature and reduce the number of surface defects. The pre-oxidised fibres obtained by the microwave heating method exhibit not only good crystallite size but also a smooth surface. Atomic morphology and molecular arrangement are orderly inside the fibre. The FT-IR spectrum shows that the oxidation reaction occurs at 220 °C, and the CI value of PAN fibers stabilised by microwave heating is the larger than the fibers stabilised by conventional heating. XRD analysis shows that fibers stabilised by microwave heating have low stack domains. The SEM and Raman spectra indicate that hydrogen peroxide can improve the surface finish of the fibers and reduce defects. Microwave heating can reduce the pre-oxidation temperature by about 20 °C and shorten the heating time. The economic benefits of using this method are significantly improved.


2013 ◽  
Vol 1514 ◽  
pp. 151-156
Author(s):  
Darío Pieck ◽  
Lionel Desgranges ◽  
Yves Pontillon ◽  
Pierre Matheron

ABSTRACTIn the present work, we focus on δ-Gd6UO12 phase and its stability under reducing conditions. This later point is interesting regarding reducing environment that could exist in some nuclear storage sites and that could possibly degrade δ–compounds. A polycrystalline δ-Gd6UO12 sample was prepared by sintering cubic-Gd2O3 and UO2 mixed powders under an air atmosphere. The resulting pellets were then characterized and reduced by heat treatment under an Ar with H2 5% atmosphere. XRD analysis of the sample after reduction did not confirm the reduction into Gd6UO11 but a decomposition of the δ-compound. Preliminary characterizations of these decomposition products are presented.


2001 ◽  
Vol 64 (6) ◽  
pp. 890-894 ◽  
Author(s):  
ISABEL SIERRA ◽  
CONCEPCIÓN VIDAL-VALVERDE

The effect of continuous-flow microwave treatment at high temperatures on the retention of vitamins B1 and B6 in raw milk with different fat content was evaluated. Results were compared with those obtained using a conventional system (tubular heat exchanger) with the same heating and cooling phases. Heat treatment of whole (3.4% fat) and skim (0.5% fat) milk at 90°C produced no losses of vitamin B1 or vitamin B6 (pyridoxamine and pyridoxal). However, at 110 and 120°C, while vitamin B1 content of milk remained constant, pyridoxamine increased (4 to 5% and 9 to 11%, respectively) and pyridoxal decreased (5 to 6% and 9 to 12%, respectively). Under the assayed conditions, no differences were observed between the content of these vitamins in conventionally and continuous-flow microwave-treated milk.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e53720 ◽  
Author(s):  
Gábor Géczi ◽  
Márk Horváth ◽  
Tímea Kaszab ◽  
Gonzalo Garnacho Alemany

1994 ◽  
Vol 08 (19) ◽  
pp. 1175-1183 ◽  
Author(s):  
G. RAVI CHANDRA ◽  
B. GOPALA KRISHNA ◽  
S. V. SURYANARAYANA ◽  
T. S. N. MURTHY

The effect of the addition of Sn on the superconducting properties of the Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O y system as functions of Sn concentration and heat treatment has been studied by dc electrical resistance, ac magnetic susceptibility, and X-ray diffraction. Tin addition suppresses the volume fraction of the high T c phase. Samples with Sn > 0.1 show metallic behavior up to LNT. The formation of the Ca 2 PbO 4 phase is promoted by Sn. This depletes the amount of Pb and Ca necessary for the formation of the 2223 phase, thus reducing the volume fraction of the 2223 phase. It is possible that at least a small fraction of tin substitutes some of the cationic sites of the starting composition. The results of the different measurements are presented.


Author(s):  
Wellington da Silva Mattos ◽  
George Edward Totten ◽  
Lauralice de Campos Franceschini Canale

This article describes the concept of uphill quenching process applied in the heat treatment of aluminum alloys. Uphill quenching is interesting since residual stress reductions of up to 80% has been reported. In addition, substantial improvements in dimensional stability have been achieved for several types of aluminum parts. Often, uphill quenching is applied after quenching and before aging during the heat treatment of aluminum alloys. The uphill quenching process consists of the immersion of the part in a cryogenic environment, and after homogenization of the temperature, the part is transferred to the hot steam chamber to obtain a temperature gradient that will maintain the mechanical properties gained with this process. The results obtained are lower residual stress and better dimensional stability. The aim of this article is to provide a review of this process and to compare it with conventional heat treatment.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Łukasz Poloczek ◽  
Łukasz Rauch ◽  
Marek Wilkus ◽  
Daniel Bachniak ◽  
Władysław Zalecki ◽  
...  

The paper describes physical and numerical simulations of a manufacturing process composed of hot forging and controlled cooling, which replace the conventional heat treatment technology. The objective was to investigate possibilities and limitations of the heat treatment with the use of the heat of forging. Three steels used to manufacture automotive parts were investigated. Experiments were composed of two sets of tests. The first were isothermal (TTT) and constant cooling rate (CCT) dilatometric tests, which supplied data for the identification of the numerical phase transformation model. The second was a physical simulation of the sequence forging-cooling on Gleeble 3800, which supplied data for the validation of the models. In the numerical part, a finite element (FE) thermal-mechanical code was combined with metallurgical models describing recrystallization and grain growth during forging and phase transformations during cooling. The FE model predicted distributions of the temperature and the austenite grain size in the forging, which were input data for further simulations of phase transformations during cooling. A modified JMAK equation was used to calculate the kinetics of transformation and volume fraction of microstructural constituents after cooling. Since the dilatometric tests were performed for various austenitization temperatures before cooling, it was possible to include austenite grain size as a variable in the model. An inverse algorithm developed by the authors was applied in the identification procedure. The model with optimal material parameters was used for simulations of hot forging and controlled cooling in one of the forging shops in Poland. Distributions of microstructural constituents in the forging after cooling were calculated. As a consequence, various cooling sequences during heat treatment could be analyzed and compared.


Sign in / Sign up

Export Citation Format

Share Document