Influence of Processing Variables on Tensile Strength and Water Absorption of Natural Fibers Hybrid Composites

2021 ◽  
pp. 1-12
Author(s):  
K. Saravanan ◽  
S. Kubera Sampath Kumar ◽  
C. Prakash ◽  
S. Sivamani ◽  
J. Prakash Maran ◽  
...  
2020 ◽  
Vol 8 (5) ◽  
pp. 3586-3590

Natural fiberss represent a good renewable and biodegradable alternative the.. most common man-made reinforcement. Among various fibers, natural fibers are used due to their advantages, easy availability, low density, low production cost and better mechanical properties. The aim of this work is to study the degradation of hybrid composites when exposed to moisture condition at room temperature. Hand lay-up method is used to prepare the laminates with the J-G FRP and epoxy matrix. Water absorption test is carried out by immersing the specimen in water tub at room temperature for different time periods. Mechanical properties.. like Tensile strength, Flexural strength, Impact strength and Hardness are evaluated by performing different tests on laminates. The mechanicall properties of water immersed specimen were tested and compared with dry samples as per the ASTM standard. The composites specimens with J-G FRE matrix absorbs less amount of water when compared to polyester specimens. Equilibrium moisture content and water absorption curves were determined. J-G FRE matrix composite was found to have less water absorption and decreased impact strength is 0.19J / mm2, decreased tensile strength is 61.11MPa, decreased flexural strength is 31.29MPa and decreased stiffness is 13HN compared to J-G FRP matrix composite.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Anna Kufel ◽  
Stanisław Kuciel

The aim of the research was to study the effects of adding natural fillers to a polypropylene (PP) matrix on mechanical and physical properties of hybrid composites. The 10%, 15%, and 20% by weight basalt fibers (BF) and ground hazelnut shells (HS) were added to the PP matrix. Composites were produced by making use of an injection molding method. Tensile strength, tensile modulus, strain at break, Charpy impact strength, and the coefficient of thermal expansion were determined. The influence of temperature, thermal aging, and water absorption on mechanical properties was also investigated. In addition, short-time creep tests were carried out. To characterize the morphology and the filler distribution within the matrix, a scanning electron microscope (SEM) was used. The results showed that the addition of the two types of filler enhanced mechanical properties. Furthermore, improvements in thermal stability were monitored. After water absorption, the changes in the tensile properties of the tested composites were moderate. However, thermal aging caused a decrease in tensile strength and tensile modulus.


2013 ◽  
Vol 701 ◽  
pp. 42-46 ◽  
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

This research is to identify the difference in melt flow and mechanical properties in hybrid composites between kenaf and rice husk that each of the filler was compounded with composite material of calcium carbonate (CaCO3) and high density polyethylene (HDPE) in different loading amount. Different filler loading up to 30 parts of kenaf fibers and rice husk particulate were mixed with the fixed 30% amount of CaCO3. Compounded hybrid composite were prepared and tested for melt flow index, tensile and impact strength. Addition of both fillers had decreased melt flow index (MFI). MFI of rice husk/CaCO3 was higher than kenaf/CaCO3 in HDPE composites. Tensile strength, elongation at break and impact properties of both hybrid composites had decreased with increasing filler content. Tensile strength of kenaf/CaCO3 was higher than rice husk/CaCO3 due to intrinsic fiber structure of kenaf which has some reinforcing effect compared to rice husk. While, impact strength of rice husk/CaCO3 was improved with addition of filler but drastically decrease as the rice husk content were increased up to 30% due to high silica content in rice husk. The Youngs Modulus was increased with addition of natural fibers in CaCO3/HDPE composite.


2019 ◽  
pp. 089270571987823 ◽  
Author(s):  
Md RH Mazumder ◽  
F Numera ◽  
A Al-Asif ◽  
M Hasan

Present research investigates the effect of bentonite clay and polypropylene (PP) matrix on the properties of silk and glass fiber hybrid composites. Three types of composite were prepared with 10 wt% silk and fiber at 1:1 ratio using hot press machine. In two composites commercial and recycled PP were used as matrix, while in third composite bentonite clay was added to silk and glass-reinforced commercial PP. Mechanical (tensile, flexural, impact, and hardness) tests, water absorption test, and thermogravimetric analysis were subsequently conducted. Tensile strength, flexural modulus, and hardness decreased, whereas Young’s modulus, impact strength, water absorption, and thermal stability increased with the addition of bentonite clay. On the other hand, change of matrix from commercial PP to recycled PP increased Young’s modulus, flexural strength, impact strength, and thermal stability and decreased tensile strength, flexural modulus, and hardness.


2019 ◽  
Vol 895 ◽  
pp. 176-180
Author(s):  
C.K. Yogish ◽  
S. Pradeep ◽  
B. Kuldeep ◽  
K.P. Ravikumar ◽  
Rao R. Raghavendra

Over the last decades composite materials, plastics and ceramics have been the dominant emerging materials. The volume and number of applications of composite materials have grown steadily, penetrating and conquering new markets relentlessly. So everybody is concentrating on new materials which will be strong enough, less weight, recyclable with reduced cost. Hence all the researchers are concentrated on the composite materials which have all the above properties. The present work is concentrated on coconut coir fiber and Rice husk reinforced polyester hybrid composites. The composites specimen was fabricated with various weight percentages of natural fibers namely coconut coir (20%, 15%, 10%, and 5%) and Rice husk (15%, 10%, and 5%) combined with CamElect 3321 resin using hand lay-up method. So to obtain new composite materials different proportions of coconut coir and Rice husk is added and the mechanical properties such as Tensile strength, Flexural Strength and Impact test were carried out for the samples cut from the fabricated composites specimen to the dimensions as per ASTM standard. With the increasing percentage of the reinforcements the performance of the material is improving. The tensile strength increases with the increase in coir reinforcement percentage and flexural strength increases with the increasing in percentage of the rice husk and the impact strength of the material gets boost with equal proportional percentage of coconut coir and rice husk reinforcement.


2020 ◽  
pp. 152808372094424
Author(s):  
Seyed Ehsan Samaei ◽  
Hasan Asilian Mahabadi ◽  
Seyyed Mohammad Mousavi ◽  
Ali Khavanin ◽  
Mohammad Faridan ◽  
...  

Among fibers with lignocellulosic origin, Kenaf fiber, because of its advantages and as a sustainable alternative to synthetic fibers has received increasing attention for manufacturing hybrid composites with reasonable acoustical and physical properties. The present study deals with the impact of chemical treatment of Kenaf fibers on the overall properties of hybrid composites fabricated from these fibers. Also, the results from predictive analytical model of sound absorption for these composites were employed for comparison with the experimental findings. Kenaf fibers were treated at room temperature with 6% concentration of sodium hydroxide (NaOH) and 4 h immersion time. Having manufactured the composites with the treated and untreated fibers, the normal sound absorption coefficients and tensile strength properties of these sample composites were determined according to ISO 10534-2 and ASTM C1557 − 14, respectively. The SEM analysis of the treated and untreated fibers revealed that in terms of fiber diameter and morphology the former was thinner and had better surface appearance. The experimental measurement of acoustic absorption coefficients of the composites made of treated fibers demonstrated superior sound absorption properties and tensile strength. The revised empirical models proposed by Delany & Bazley and Garai & Pompoli along with Nelder-Mead simplex method were employed and well predicted the sound absorption coefficients of the sample composites. There was also a fair consistency between the experimental and predicted results.


Author(s):  
EKHLAS A. OSMAN ◽  
ANATOLI VAKHGUELT ◽  
IGOR SBARSKI ◽  
SAAD A. MUTASHER

Effects of water absorption on the flexural properties of kenaf-unsaturated polyester composites and kenaf/recycled jute-unsaturated polyester composites were investigated. In the hybrid composites, the total fiber content was fixed to 20 wt%. In this 20 wt%, the addition of jute fiber varied from 0 to 75%, with increment of 25%. The result demonstrates the water absorption and the thickness swelling increased with increase in immersion time. Effects of water absorption on flexural properties of kenaf fiber composites can be reduced significantly with incorporation of recycled jute in composites formulation. The process of absorption of water was found to approach Fickian diffusion behavior for both kenaf composites and hybrid composites.


Author(s):  
Veenapani R ◽  
B M Rajaprakash ◽  
Akash M

Natural fibers composite play an important role in making eco-friendly products. The present investigation has been made to find tensile strength of hybrid composites fabricated using optimal composition of sisal fiber, glass fiber and alumina. Multi-response optimization has been carried out. The compositions of reinforcements namely sisal fiber, glass fiber and alumina in hybrid composite were prepared by Hand-layup technique. Sisal fiber of 20 Wt.%, 30 Wt.% and 40 Wt.% are chopped into 10mm length, Glass fiber of 20 Wt.%, 30 Wt.% and 40 Wt.% are 10mm length and alumina particles of 2Wt.%, 3 Wt.% and 4 Wt.% are compositions of reinforcement were chosen according to orthogonal array as Taguchi technique(L9). The results have been verified through confirmatory experiments. Experimentations were carried out with the different composition based on L9 process parameters. Based on the experimental observations the maximum ultimate tensile strength was found to be 37.87 MPa for optimised input parameters as 20% of sisal fiber, 30% of glass fiber and 3% of alumina.


2016 ◽  
Vol 36 (1) ◽  
pp. 87-95
Author(s):  
U Shehu ◽  
MT Isa ◽  
BO Aderemi ◽  
TK Bello

In order to improve properties of natural fibers as reinforcement, different treatment methods have being adopted by researchers. However, the use of sodium hydroxide (NaOH) for the treatment of baobab pod fiber as reinforcement in low density polyethylene is sparsely reported. Therefore, this study, investigated the effect of 2 wt%, 4 wt% 6 wt%, 8 wt% and 10 wt%  concentration of NaOH on baobab pod fibers as reinforcement for low density polyethylene (LDPE). Two roll mill machine and hydraulic press at a pressure of 10 kN and temperature of 120oC aided the production of the composite. FT-IR was used to analyze the functional groups of the treated and un-treated fibers. The result showed the disappearance of the peak 1550 cm-1 corresponding to lignin after modification. Further, the composites were characterized for the following tensile strength (TS), modulus of elasticity (MOE), elongation at break, impact strength and water absorption. Preliminary studies on the effect of loading of the unmodified baobab fiber in the LDPE matrix showed desirable properties at 10 wt%, where fiber content was in the range of 5 wt% to 30 wt% at interval of 5 wt%. The composite produced from the 8 wt% NaOH modified fiber had the highest tensile strength, MOE, elongation at break. At this modification level, the tensile strength, MOE and elongation at break were about 75.48%, 92.18% and 28% respectively higher than the composite produced from unmodified fiber. Composite produced with 10 wt% NaOH modified fiber exhibited least water absorption of 1.80%, which was 50% lower than unmodified. These showed that the modification of the fiber improved the composite properties. These properties compared favorably with some reported properties for natural fiber reinforced polymer composites. http://dx.doi.org/10.4314/njt.v36i1.12


Sign in / Sign up

Export Citation Format

Share Document