scholarly journals RNA binding Motif protein-38 regulates myocardial hypertrophy in LXR-α-dependent lipogenesis pathway

Bioengineered ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 9655-9667
Author(s):  
Yao Li ◽  
Yanhu Shi ◽  
Yaoli He ◽  
Xiaoming Li ◽  
Junlu Yang
Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 883
Author(s):  
Anna Gaertner ◽  
Julia Bloebaum ◽  
Andreas Brodehl ◽  
Baerbel Klauke ◽  
Katharina Sielemann ◽  
...  

A major cause of heart failure is cardiomyopathies, with dilated cardiomyopathy (DCM) as the most common form. Over 40 genes are linked to DCM, among them TTN and RBM20. Next Generation Sequencing in clinical DCM cohorts revealed truncating variants in TTN (TTNtv), accounting for up to 25% of familial DCM cases. Mutations in the cardiac splicing factor RNA binding motif protein 20 (RBM20) are also known to be associated with severe cardiomyopathies. TTN is one of the major RBM20 splicing targets. Most of the pathogenic RBM20 mutations are localized in the highly conserved arginine serine rich domain (RS), leading to a cytoplasmic mislocalization of mutant RBM20. Here, we present a patient with an early onset DCM carrying a combination of (likely) pathogenic TTN and RBM20 mutations. We show that the splicing of RBM20 target genes is affected in the mutation carrier. Furthermore, we reveal RBM20 haploinsufficiency presumably caused by the frameshift mutation in RBM20.


Oncogene ◽  
2021 ◽  
Author(s):  
Qiuxia Yan ◽  
Peng Zeng ◽  
Xiuqin Zhou ◽  
Xiaoying Zhao ◽  
Runqiang Chen ◽  
...  

AbstractThe prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Karolina Boman ◽  
Gustav Andersson ◽  
Christoffer Wennersten ◽  
Björn Nodin ◽  
Göran Ahlgren ◽  
...  

Author(s):  
Hairuo Lin ◽  
Yingqi Zhu ◽  
Cankun Zheng ◽  
Donghong Hu ◽  
Siyuan Ma ◽  
...  

Background: Exercise can induce physiological myocardial hypertrophy (PMH), and former athletes can live 5-6 years longer than nonathletic controls, suggesting a benefit after regression of PMH. We previously reported that regression of pathological myocardial hypertrophy has antihypertrophic effects. Accordingly, we hypothesized that antihypertrophic memory exists even after PMH has regressed, increasing myocardial resistance to subsequent pathological hypertrophic stress. Methods: C57BL/6 mice were submitted to 21 days of swimming training to develop PMH. After termination of exercise, PMH regressed within 1 week. PMH regression mice (exercise hypertrophic preconditioning group, EHP) and sedentary mice (control group) then underwent transverse aortic constriction (TAC) or a sham operation for 4 weeks. Cardiac remodeling and function were evaluated using echocardiography, invasive left ventricular hemodynamic measurement and histological analysis. LncRNA sequencing, chromatin immunoprecipitation assay (ChIP), and comprehensive identification of RNA-binding proteins by mass spectrometry (CHIRP-MS) and Western blot were used to investigate the role of Mhrt779 involved in the anti-hypertrophy effect induced by EHP. Results: At 1 and 4 weeks after TAC, the EHP group showed less increase in myocardial hypertrophy and lower expression of the Nppa and Myh7 genes than the sedentary group. At 4 weeks after TAC, EHP mice had less pulmonary congestion, smaller left ventricular dimensions and end-diastolic pressure, and a larger left ventricular ejection fraction and maximum pressure change rate than sedentary mice. Quantitative polymerase chain reaction (qPCR) revealed that the long noncoding myosin heavy chain associated RNA transcript Mhrt779 was one of the markedly upregulated long noncoding RNAs in the EHP group. Silencing of Mhrt779 attenuated the antihypertrophic effect of EHP in mice with TAC and in cultured cardiomyocytes treated with angiotensin II, and overexpression enhanced the antihypertrophic effect. By ChIP and qPCR, we found that EHP increased histone 3 trimethylation (H3K4me3 and H3K36me3) at the a4 promoter of Mhrt779 . CHIRP-MS and Western blot showed that Mhrt779 can bind Brg1 to inhibit the activation of Hdac2/Akt/GSK3β pathway induced by pressure overload. Conclusions: Myocardial hypertrophy preconditioning evoked by exercise increases resistance to pathological stress via an antihypertrophic effect mediated by a signal pathway of Mhrt779 /Brg1/Hdac2/p-Akt/p-GSK3β.


2007 ◽  
Vol 407 (3) ◽  
pp. 355-362 ◽  
Author(s):  
Ching Wan Chan ◽  
Youn-Bok Lee ◽  
James Uney ◽  
Andrea Flynn ◽  
Jonathan H. Tobias ◽  
...  

The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels.


2018 ◽  
Vol 119 (12) ◽  
pp. 9986-9996 ◽  
Author(s):  
Zhilong Chen ◽  
Rexiati Maimaiti ◽  
Chaoqun Zhu ◽  
Hanfang Cai ◽  
Allysa Stern ◽  
...  

2015 ◽  
Author(s):  
◽  
Erin C. Boone

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Meiotic silencing by unpaired DNA (MSUD) is an RNA interference (RNAi) pathway in Neurospora crassa that detects genes without a homologous partner and silences them for the duration of sexual development. In this study, we have further elucidated the function of known MSUD proteins, identified novel proteins that are required for MSUD, and demonstrated the conservation of RNAi-related processes at the nuclear periphery. We began by showing SAD-2 is crucial for the localization of other MSUD proteins in the perinuclear region. These data suggest that SAD-2 works as a scaffold protein and that proper function of MSUD, like other germline RNAi-like systems, is reliant on the presence of silencing proteins in the perinuclear region. An MSUD suppression assay identified two novel MSUD proteins, SAD-Y and SAD-B'. Even though SAD-Y and its homologs contain a conserved putative RNA- binding motif, they have yet to be assigned to a biochemical pathway. Our work here has linked silencing to SAD-Y-like proteins. SAD-Y has been shown to interact with other MSUD factors in both the nucleus and at the nuclear periphery. SAD-B's homolog has been found in the nuage, an epicenter for RNA-binding proteins involved in post-transcriptional regulation for Drosophila germline cells. SAD-B interacts with core MSUD proteins and has an especially intimate association with SMS-2, which requires it for localization. Furthermore, bimolecular fluorescence complementation (BiFC) revealed that SAD-B' interacts with a Golgi retrograde transport protein and an autophagy marker protein, suggesting the importance of the endomembrane system in this RNAi process.


2020 ◽  
Vol 9 (15) ◽  
pp. 5609-5619 ◽  
Author(s):  
Annette Salomonsson ◽  
Patrick Micke ◽  
Johanna S. M. Mattsson ◽  
Linnea La Fleur ◽  
Johan Isaksson ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Deepika Vasudevan ◽  
Sarah D. Neuman ◽  
Amy Yang ◽  
Lea Lough ◽  
Brian Brown ◽  
...  

Abstract The Integrated Stress Response (ISR) helps metazoan cells adapt to cellular stress by limiting the availability of initiator methionyl-tRNA for translation. Such limiting conditions paradoxically stimulate the translation of ATF4 mRNA through a regulatory 5′ leader sequence with multiple upstream Open Reading Frames (uORFs), thereby activating stress-responsive gene expression. Here, we report the identification of two critical regulators of such ATF4 induction, the noncanonical initiation factors eIF2D and DENR. Loss of eIF2D and DENR in Drosophila results in increased vulnerability to amino acid deprivation, susceptibility to retinal degeneration caused by endoplasmic reticulum (ER) stress, and developmental defects similar to ATF4 mutants. eIF2D requires its RNA-binding motif for regulation of 5′ leader-mediated ATF4 translation. Consistently, eIF2D and DENR deficient human cells show impaired ATF4 protein induction in response to ER stress. Altogether, our findings indicate that eIF2D and DENR are critical mediators of ATF4 translational induction and stress responses in vivo.


Sign in / Sign up

Export Citation Format

Share Document