scholarly journals Shedding of Syndecan-1 and -4 Ectodomains Is Regulated by Multiple Signaling Pathways and Mediated by a Timp-3–Sensitive Metalloproteinase

2000 ◽  
Vol 148 (4) ◽  
pp. 811-824 ◽  
Author(s):  
Marilyn L. Fitzgerald ◽  
Zihua Wang ◽  
Pyong Woo Park ◽  
Gillian Murphy ◽  
Merton Bernfield

The syndecan family of four transmembrane heparan sulfate proteoglycans binds a variety of soluble and insoluble extracellular effectors. Syndecan extracellular domains (ectodomains) can be shed intact by proteolytic cleavage of their core proteins, yielding soluble proteoglycans that retain the binding properties of their cell surface precursors. Shedding is accelerated by PMA activation of protein kinase C, and by ligand activation of the thrombin (G-protein–coupled) and EGF (protein tyrosine kinase) receptors (Subramanian, S.V., M.L. Fitzgerald, and M. Bernfield. 1997. J. Biol. Chem. 272:14713–14720). Syndecan-1 and -4 ectodomains are found in acute dermal wound fluids, where they regulate growth factor activity (Kato, M., H. Wang, V. Kainulainen, M.L. Fitzgerald, S. Ledbetter, D.M. Ornitz, and M. Bernfield. 1998. Nat. Med. 4:691–697) and proteolytic balance (Kainulainen, V., H. Wang, C. Schick, and M. Bernfield. 1998. J. Biol. Chem. 273:11563–11569). However, little is known about how syndecan ectodomain shedding is regulated. To elucidate the mechanisms that regulate syndecan shedding, we analyzed several features of the process that sheds the syndecan-1 and -4 ectodomains. We find that shedding accelerated by various physiologic agents involves activation of distinct intracellular signaling pathways; and the proteolytic activity responsible for cleavage of syndecan core proteins, which is associated with the cell surface, can act on unstimulated adjacent cells, and is specifically inhibited by TIMP-3, a matrix-associated metalloproteinase inhibitor. In addition, we find that the syndecan-1 core protein is cleaved on the cell surface at a juxtamembrane site; and the proteolytic activity responsible for accelerated shedding differs from that involved in constitutive shedding of the syndecan ectodomains. These results demonstrate the existence of highly regulated mechanisms that can rapidly convert syndecans from cell surface receptors or coreceptors to soluble heparan sulfate proteoglycan effectors. Because the shed ectodomains are found and function in vivo, regulation of syndecan ectodomain shedding by physiological mediators indicates that shedding is a response to specific developmental and pathophysiological cues.

2020 ◽  
Author(s):  
Rachel K Okolicsanyi ◽  
Julia Bluhm ◽  
Cassandra Miller ◽  
Lyn R Griffiths ◽  
Larisa M Haupt

Abstract Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI-linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. Exostosin-1 (EXT1) and sulfatase-1 (SULF1) are two enzymes responsible for the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in initiation and polymerisation of the growing HS chain. SULF1 removes 6- O -sulfate groups from HS chains, thereby affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.


1997 ◽  
Vol 186 (10) ◽  
pp. 1793-1798 ◽  
Author(s):  
Craig B. Davis ◽  
Ivan Dikic ◽  
Derya Unutmaz ◽  
C. Mark Hill ◽  
James Arthos ◽  
...  

Infection with HIV-1 requires expression of CD4 and the chemokine receptors CXCR4 or CCR5 at the target cell surface. Engagement of these receptors by the HIV-1 envelope glycoprotein is essential for membrane fusion, but may additionally activate intracellular signaling pathways. In this study, we demonstrate that chemokines and HIV-1 envelope glycoproteins from both T-tropic and macrophage-tropic strains rapidly induce tyrosine phosphorylation of the protein tyrosine kinase Pyk2. The response requires CXCR4 and CCR5 to be accessible on the cell surface. The results presented here provide the first evidence for activation of an intracellular signaling event that can initiate multiple signaling pathways as a consequence of contact between HIV-1 and chemokine receptors.


1992 ◽  
Vol 263 (3) ◽  
pp. L348-L356 ◽  
Author(s):  
W. M. Maniscalco ◽  
M. H. Campbell

Type II alveolar epithelial cells interact with the extracellular matrix via cell surface receptors for matrix ligands. Cell surface proteoglycans, which are hydrophobic due to their membrane insertion domains, are one of several classes of molecules that may be receptors for matrix ligands. To analyze the hydrophobic proteoglycans synthesized by adult alveolar type II cells, we labeled these cells with 35SO4 and [3H]leucine in short-term primary cultures. Cell-associated hydrophobic proteoglycans and culture medium-derived proteoglycans were purified and characterized. Both the hydrophobic proteoglycans and medium-derived proteoglycans, which were not hydrophobic, had mainly heparan sulfate glycosaminoglycans. Analysis of core proteins of the hydrophobic proteoglycans showed three proteins, 47, 65, and 90 kDa. The 47- and 65-kDa core proteins were substituted only with heparan sulfate chains. The 90-kDa core protein was seen only after digestion with both heparitinase and chondroitin ABC lyase, suggesting it was a hybrid having both heparan sulfate and chondroitin-dermatan sulfate chains. These findings were confirmed by iodination of the core proteins. The hydrophobic cell-associated proteoglycans inserted into artificial liposomes, whereas the medium-derived molecules did not. These data document heterogeneity in core protein and glycosaminoglycan chains among hydrophobic proteoglycans synthesized in vitro by adult alveolar type II cells. These molecules may have diverse functions in regulating type II cell interaction with the extracellular matrix.


2020 ◽  
Author(s):  
Rachel K Okolicsanyi ◽  
Julia Bluhm ◽  
Cassandra Miller ◽  
Lyn R Griffiths ◽  
Larisa M Haupt

Abstract Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system in young adults. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to the cell surface and the extracellular matrix. HSPG biosynthesis is a complex process involving enzymatic attachment of heparan sulfate (HS) chains to a core protein. HS side chains mediate specific ligand and growth factor interactions directing cellular processes including cell adhesion, migration and differentiation. Two main families of HSPGs exist, the syndecans (SDC1-4) and glypicans (GPC1-6). The SDCs are transmembrane proteins, while the GPC family are GPI-linked to the cell surface. SDC1 has well-documented interactions with numerous signalling pathways. Genome wide association studies (GWAS) have identified regions of the genome associated with MS including a region on chromosome 13 containing GPC5 and GPC6. International studies have revealed significant associations between this region and disease development. The exostosin-1 (EXT1) and sulfatase-1 (SULF1) are key enzymes contributing to the generation of HS chains. EXT1, with documented tumour suppressor properties, is involved in initiation and polymerisation of the growing HS chain. SULF1 removes 6- O -sulfate groups from HS chains, affecting protein-ligand interactions and subsequent downstream signalling with HS modification potentially having significant effects on MS progression. In this study we identified significant associations between single nucleotide polymorphisms in SDC1, GPC5 and GPC6 and MS in an Australian Caucasian case control population. Further significant associations in these genes were identified when the population was stratified by sex and disease subtype. No association was found for EXT1 or SULF1.


1996 ◽  
Vol 132 (6) ◽  
pp. 1209-1221 ◽  
Author(s):  
C S Lebakken ◽  
A C Rapraeger

Syndecan-1 is a cell surface proteoglycan containing a highly conserved transmembrane and cytoplasmic domain, and an extracellular domain bearing heparan sulfate glycosaminoglycans. Through these domains, syndecan-1 is proposed to have roles in growth factor action, extracellular matrix adhesion, and cytoskeletal organization that controls cell morphology. To study the role of syndecan-1 in cell adhesion and cytoskeleton reorganization, mouse syndecan-1 cDNA was transfected into human Raji cells, a lymphoblastoid cell line that grows as suspended cells and exhibits little or no endogenous cell surface heparan sulfate. High expressing transfectants (Raji-Sl cells) bind to and spread on immobilized thrombospondin or fibronectin, which are ligands for the heparan sulfate chains of the proteoglycan. This binding and spreading as not dependent on the cytoplasmic domain of the core protein, is mutants expressing core proteins with cytoplasmic deletions maintain the ability to spread. The spreading is mediated through engagement of the syndecan-1 core protein, as the Raji-S 1 cells also bind to and spread on immobilized mAb 281.2, an antibody specific for the ectodomain of the syndecan-1 core protein. Spreading on the antibody is independent of the heparan sulfate glycosaminoglycan chains and can be inhibited by competition with soluble mAb 281.2. The spreading can be inhibited by treatment with cytochalasin D or colchicine. These data suggest that the core protein of syndecan-1 mediates spreading through the formation of a multimolecular signaling complex at the cell surface that signals cytoskeleton reorganization. This complex may form via intramembrane or extracellular interactions with the syndecan core protein.


1999 ◽  
Vol 82 (08) ◽  
pp. 305-311 ◽  
Author(s):  
Yuri Koshelnick ◽  
Monika Ehart ◽  
Hannes Stockinger ◽  
Bernd Binder

IntroductionThe urokinase-urokinase receptor (u-PA-u-PAR) system seems to play a crucial role in a number of biological processes, including local fibrinolysis, tumor invasion, angiogenesis, neointima and atherosclerotic plaque formation, inflammation, and matrix remodeling during wound healing and development.1-6 Binding of urokinase to its specific receptor provides cells with a localized proteolytic potential. It stimulates conversion of cell surface-bound plasminogen into active plasmin, which, in turn, is required for proteolytic degradation of basement membrane components, including fibronectin, collagen, laminin, and proteoglycan core proteins.7 Moreover, plasmin activates other matrix-degrading enzymes, such as matrix metalloproteinases.8 Overexpression of u-PA/u-PAR correlates with tumor invasion and metastasis formation,9-13 while reduction of cell-surface bound u-PA and inhibition of u-PAR expression leads to a significant decrease of invasive and metastatic activity.14 Specific antagonists that suppress binding of u-PA to u-PAR have been shown to inhibit cell-surface plasminogen activation, tumor growth, and angiogenesis both in vitro and in vivo models.15,16 Independently of its proteolytic activity, u-PA is implicated in many biological processes that seem to require u-PAR-mediated intracellular signal transduction, such as proliferation, chemotactic movement and adhesion, migration, and differentiation.17 Data obtained in the late 1980s indicated that u-PA not only provides cells with local proteolytic activity, but might also be capable of transducing signals to the cell.18-22 At that time, however, the u-PAR has just been isolated, cloned, and identified as a glycosylphosphatidylinositol (GPI)-linked protein and not a transmembrane protein. Signaling via the u-PAR was, therefore, regarded as being unlikely, and the effects of u-PA on cell proliferation18-22 were thought to be mediated by proteolytic activation of latent growth factors. The assumption of direct signaling via u-PAR was, in fact, considered controversial, until about 10 years later when a physical association between u-PAR and signaling proteins was found.23 From this report on, several proteins associated with u-PAR have been identified. Now, u-PAR seems to be part of a large “signalosome” associated and interacting with several proteins on both the outside and inside of the cell.


Genetics ◽  
2021 ◽  
Author(s):  
Mélissa Cizeron ◽  
Laure Granger ◽  
Hannes E BÜlow ◽  
Jean-Louis Bessereau

Abstract Heparan sulfate proteoglycans contribute to the structural organization of various neurochemical synapses. Depending on the system, their role involves either the core protein or the glycosaminoglycan chains. These linear sugar chains are extensively modified by heparan sulfate modification enzymes, resulting in highly diverse molecules. Specific modifications of glycosaminoglycan chains may thus contribute to a sugar code involved in synapse specificity. Caenorhabditis elegans is particularly useful to address this question because of the low level of genomic redundancy of these enzymes, as opposed to mammals. Here, we systematically mutated the genes encoding heparan sulfate modification enzymes in C. elegans and analyzed their impact on excitatory and inhibitory neuromuscular junctions. Using single chain antibodies that recognize different heparan sulfate modification patterns, we show in vivo that these two heparan sulfate epitopes are carried by the SDN-1 core protein, the unique C. elegans syndecan orthologue, at neuromuscular junctions. Intriguingly, these antibodies differentially bind to excitatory and inhibitory synapses, implying unique heparan sulfate modification patterns at different neuromuscular junctions. Moreover, while most enzymes are individually dispensable for proper organization of neuromuscular junctions, we show that 3-O-sulfation of SDN-1 is required to maintain wild-type levels of the extracellular matrix protein MADD-4/Punctin, a central synaptic organizer that defines the identity of excitatory and inhibitory synaptic domains at the plasma membrane of muscle cells.


2000 ◽  
Vol 74 (7) ◽  
pp. 3353-3365 ◽  
Author(s):  
Chi-Long Lin ◽  
Che-Sheng Chung ◽  
Hans G. Heine ◽  
Wen Chang

ABSTRACT An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L−) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L− mutant virus. IMV from the H3L− mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L− mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.


2021 ◽  
Vol 22 (5) ◽  
pp. 2712
Author(s):  
Anne Hanneken ◽  
Maluz Mercado ◽  
Pamela Maher

The identification of soluble fibroblast growth factor (FGF) receptors in blood and the extracellular matrix has led to the prediction that these proteins modulate the diverse biological activities of the FGF family of ligands in vivo. A recent structural characterization of the soluble FGF receptors revealed that they are primarily generated by proteolytic cleavage of the FGFR-1 ectodomain. Efforts to examine their biological properties are now focused on understanding the functional consequences of FGFR-1 ectodomain shedding and how the shedding event is regulated. We have purified an FGFR-1 ectodomain that is constitutively cleaved from the full-length FGFR-1(IIIc) receptor and released into conditioned media. This shed receptor binds FGF-2; inhibits FGF-2-induced cellular proliferation; and competes with high affinity, cell surface FGF receptors for ligand binding. FGFR-1 ectodomain shedding downregulates the number of high affinity receptors from the cell surface. The shedding mechanism is regulated by ligand binding and by activators of PKC, and the two signaling pathways appear to be independent of each other. Deletions and substitutions at the proposed cleavage site of FGFR-1 do not prevent ectodomain shedding. Broad spectrum inhibitors of matrix metalloproteases decrease FGFR-1 ectodomain shedding, suggesting that the enzyme responsible for constitutive, ligand-activated, and protein kinase C-activated shedding is a matrix metalloprotease. In summary, shedding of the FGFR-1 ectodomain is a highly regulated event, sharing many features with a common system that governs the release of diverse membrane proteins from the cell surface. Most importantly, the FGFR ectodomains are biologically active after shedding and are capable of functioning as inhibitors of FGF-2.


2014 ◽  
Vol 207 (4) ◽  
pp. 463-480 ◽  
Author(s):  
Jonathan Bizarro ◽  
Christophe Charron ◽  
Séverine Boulon ◽  
Belinda Westman ◽  
Bérengère Pradet-Balade ◽  
...  

In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90–R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA+ adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.


Sign in / Sign up

Export Citation Format

Share Document