scholarly journals Characterization of c-kit positive intrathymic stem cells that are restricted to lymphoid differentiation.

1993 ◽  
Vol 178 (4) ◽  
pp. 1283-1292 ◽  
Author(s):  
Y Matsuzaki ◽  
J Gyotoku ◽  
M Ogawa ◽  
S Nishikawa ◽  
Y Katsura ◽  
...  

We found that c-kit-positive, lineage marker-negative, Thy-1lo cells are present in both bone marrow and thymus ("BM c-kit" and "thymus c-kit" cells). Although the two cell types are phenotypically similar, only BM c-kit cells showed the potential to form colonies in vitro as well as in vivo. However, both of them revealed extensive growth and differentiation potential to T cells after direct transfer into an irradiated adult thymus, or a deoxyguanosine-treated fetal thymus. Time course analysis showed that thymus c-kit cells differentiated into CD4CD8 double-positive cells approximately 4 d earlier than BM c-kit cells did. In addition, anti-c-kit antibody blocked T cell generation of BM c-kit cells but not of thymus c-kit cells. Intravenous injection of thymus c-kit resulted in the generation of not only T cells, but B as well as NK1.1+ cells. These data provide evidence that thymus c-kit cells represent common lymphoid progenitors with the differentiation potential to T, B, and possibly NK cells. The c-kit-mediated signaling appears to be essential in the transition from BM c-kit to thymus c-kit cells.

1993 ◽  
Vol 177 (3) ◽  
pp. 821-832 ◽  
Author(s):  
T R Kollmann ◽  
M M Goldstein ◽  
H Goldstein

To determine whether the human thymus provides an environment for the maturation of murine T cells, human fetal thymus and liver (hu-thy/liv) were implanted into congenitally athymic NIH-beige-nude-xid (BNX) mice or C.B-17 scid/scid (SCID) mice. 3 mo after implantation, in contrast to the hu-thy/liv implant in SCID mice, which was populated only with human CD4/CD8 single- and double-positive thymocytes, the hu-thy/liv implant in BNX mice contained a chimeric population of human and mouse CD4/CD8 single- and double-positive thymocytes. Immunohistochemical staining of the hu-thy/liv implant in BNX mice indicated that the population of double-positive mouse thymocytes was localized to discrete areas of the human fetal thymus. Quantitative improvements in mouse T cell and immunoglobulin (Ig) G parameters were observed after grafting of the human fetal thymus and liver tissue into BNX mice. In addition, in contrast to the nonimplanted BNX mice, the implanted BNX mice were capable of mounting a keyhole limpet hemocyanin-specific IgG response and their peripheral T cells were responsive to stimulation with mitogens and antibodies directed to the T cell receptor. Furthermore, after in vivo priming, T cells present in lymph nodes of the implanted BNX mice were capable of mounting an antigen-induced in vitro T cell-dependent proliferative response. Thus, concurrent with the continued maturation of human T cells, murine T cells differentiated within the human fetal thymus implanted in the BNX mice and mediated the phenotypic and functional reconstitution of the murine immune system. Mice with a reconstituted immune system that contain a human thymic implant that is infectible with human immunodeficiency virus (HIV) should prove useful in the investigation of T cell maturation in the thymus and in the evaluation of potential HIV vaccines.


Author(s):  
Mohammad H. Rashid ◽  
Thaiz F. Borin ◽  
Roxan Ara ◽  
Raziye Piranlioglu ◽  
Bhagelu R. Achyut ◽  
...  

AbstractMyeloid-derived suppressor cells (MDSCs) are an indispensable component of the tumor microenvironment (TME), and our perception regarding the role of MDSCs in tumor promotion is attaining extra layer of intricacy in every study. In conjunction with MDSC’s immunosuppressive and anti-tumor immunity, they candidly facilitate tumor growth, differentiation, and metastasis in several ways that yet to be explored. Alike any other cell types, MDSCs also release a tremendous amount of exosomes or nanovesicles of endosomal origin and partake in intercellular communications by dispatching biological macromolecules. There has not been any experimental study done to characterize the role of MDSCs derived exosomes (MDSC exo) in the modulation of TME. In this study, we isolated MDSC exo and demonstrated that they carry a significant amount of proteins that play an indispensable role in tumor growth, invasion, angiogenesis, and immunomodulation. We observed higher yield and more substantial immunosuppressive potential of exosomes isolated from MDSCs in the primary tumor area than those are in the spleen or bone marrow. Our in vitro data suggest that MDSC exo are capable of hyper activating or exhausting CD8 T-cells and induce reactive oxygen species production that elicits activation-induced cell death. We confirmed the depletion of CD8 T-cells in vivo by treating the mice with MDSC exo. We also observed a reduction in pro-inflammatory M1-macrophages in the spleen of those animals. Our results indicate that immunosuppressive and tumor-promoting functions of MDSC are also implemented by MDSC-derived exosomes which would open up a new avenue of MDSC research and MDSC-targeted therapy.


2019 ◽  
Vol 30 (8) ◽  
pp. 1439-1453 ◽  
Author(s):  
Julia Hagenstein ◽  
Simon Melderis ◽  
Anna Nosko ◽  
Matthias T. Warkotsch ◽  
Johannes V. Richter ◽  
...  

BackgroundNew therapies blocking the IL-6 receptor (IL-6R) have recently become available and are successfully being used to treat inflammatory diseases like arthritis. Whether IL-6 blockers may help patients with kidney inflammation currently remains unknown.MethodsTo learn more about the complex role of CD4+ T cell-intrinsic IL-6R signaling, we induced nephrotoxic nephritis, a mouse model for crescentic GN, in mice lacking T cell–specific IL-6Ra. We used adoptive transfer experiments and studies in reporter mice to analyze immune responses and Treg subpopulations.ResultsLack of IL-6Ra signaling in mouse CD4+ T cells impaired the generation of proinflammatory Th17 cells, but surprisingly did not ameliorate the course of GN. In contrast, renal damage was significantly reduced by restricting IL-6Ra deficiency to T effector cells and excluding Tregs. Detailed studies of Tregs revealed unaltered IL-10 production despite IL-6Ra deficiency. However, in vivo and in vitro, IL-6Ra classic signaling induced RORγt+Foxp3+ double-positive Tregs (biTregs), which carry the trafficking receptor CCR6 and have potent immunoregulatory properties. Indeed, lack of IL-6Ra significantly reduced Treg in vitro suppressive capacity. Finally, adoptive transfer of T cells containing IL-6Ra−/− Tregs resulted in severe aggravation of GN in mice.ConclusionsOur data refine the old paradigm, that IL-6 enhances Th17 responses and suppresses Tregs. We here provide evidence that T cell–intrinsic IL-6Ra classic signaling indeed induces the generation of Th17 cells but at the same time highly immunosuppressive RORγt+ biTregs. These results advocate caution and indicate that IL-6–directed therapies for GN need to be cell-type specific.


2018 ◽  
Vol 215 (4) ◽  
pp. 1101-1113 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Joon Seok Park ◽  
Jonas Marcello ◽  
Michael T. McCabe ◽  
Richard Gregory ◽  
...  

Differentiation and activation of T cells require the activity of numerous histone lysine methyltransferases (HMT) that control the transcriptional T cell output. One of the most potent regulators of T cell differentiation is the HMT Ezh2. Ezh2 is a key enzymatic component of polycomb repressive complex 2 (PRC2), which silences gene expression by histone H3 di/tri-methylation at lysine 27. Surprisingly, in many cell types, including T cells, Ezh2 is localized in both the nucleus and the cytosol. Here we show the presence of a nuclear-like PRC2 complex in T cell cytosol and demonstrate a role of cytosolic PRC2 in T cell antigen receptor (TCR)–mediated signaling. We show that short-term suppression of PRC2 precludes TCR-driven T cell activation in vitro. We also demonstrate that pharmacological inhibition of PRC2 in vivo greatly attenuates the severe T cell–driven autoimmunity caused by regulatory T cell depletion. Our data reveal cytoplasmic PRC2 is one of the most potent regulators of T cell activation and point toward the therapeutic potential of PRC2 inhibitors for the treatment of T cell–driven autoimmune diseases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1404-1404
Author(s):  
Steve D. Hughes ◽  
Ken Bannink ◽  
Cecile Krejsa ◽  
Mark Heipel ◽  
Becky Johnson ◽  
...  

Abstract Interleukin 21 (IL-21) is an IL-2 family cytokine produced by activated CD4+ T cells. Potent effects of IL-21 have been observed on the growth, survival, and functional activation of T cells, B cells, and natural killer (NK) cells. A Phase I clinical trial of IL-21 in metastatic melanoma and renal cell carcinoma is currently in progress. We recently reported that IL-21 significantly enhanced rituximab mediated clearance of CD20+ lymphoma cell lines both in vitro and in vivo, and that these effects were potentially mediated through IL-21 enhancement of NK cell capacity to effect antibody dependent cellular cytotoxicity (ADCC). Specifically, NK cells treated with IL-21 showed increased cytotoxicity, granzyme B and IFNg production. Current studies aim to further evaluate the mechanisms by which IL-21 enhances ADCC. A number of observations suggest a multi-factorial basis for IL-21 synergy with rituximab. In a xenograft tumor model, SCID mice were injected IV with HS Sultan cells on day 0. Treatment with recombinant murine IL-21 (mIL-21; starting day 1) combined with rituximab (starting day 3) resulted in significantly increased survival (70% vs. 20% on day 100), compared to rituximab alone. In separate studies, the spleens of mice treated with mIL-21 showed increased numbers of activated macrophages and granulocytes. As macrophages and granulocytes can participate in ADCC, IL-21 synergy with rituximab in vivo may be partly dependent on its activation of these cell types. We have also evaluated whether direct effects of IL-21 on lymphoma cells contribute to enhancement of rituximab efficacy. The xenogeneic B lymphoma models in which IL-21 plus rituximab exhibited enhanced survival are highly aggressive and these models were not shown to respond to treatment with mIL-21 alone. In vitro studies were performed to determine if IL-21 could potentiate the growth inhibitory and pro-apoptotic effects of rituximab. In the absence of effector cells synergistic interaction was not observed. In addition, we tested the ability of IL-21 to enhance cytotoxicity when combined with antibodies targeting non-hematopoietic tumor cells (e.g. trastuzumab). Human NK cells treated with IL-21 displayed significantly increased cytotoxicity in ADCC assays using trastuzumab to target breast cancer cells expressing varying levels of HER-2 antigen. In summary, the current evidence suggests that IL-21 can enhance antibody-mediated tumor cell lysis through activation of multiple effectors of ADCC. Thus IL-21 may prove to be broadly applicable to monoclonal antibody therapy of cancer.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1527-1527
Author(s):  
Frank Timmermans ◽  
Imke Velghe ◽  
Lieve Van Walleghem ◽  
Magda De Smedt ◽  
Stefanie Van Coppernolle ◽  
...  

Abstract Background: Human embryonic stem cells (hESC) are derived from early stage blastocysts and are characterized by the ability to both self-renew and to generate differentiated functional cell types. One of the major challenges in the field of hESC research, is to set up a culture system that drives hESC down a particular lineage fate. To date, studies reporting hematopoietic development have not provided evidence on the differentiation capacity of hESC into T lineage cells in vitro. Material and Methods: hESC line H1 (National Institutes of Health [NIH] code: WA01), Wisconson, Madison, USA) was used (Passage 30–60) in all experiments. The hESC line was kept in an undifferentiated state on MEFs as previously described. OP9 cells and OP9 cells that express high levels of the Notch ligand Delta-like 1 (OP9-DLL1, a gift from J. C. Zuniga-Pflücker, University of Toronto, Canada) were cultured as previously described in MEM-α with 20 % FCS. Results: Our data show that T cells can be generated in vitro from hESC in a robust and highly reproducible manner using the sequential exposure of hESC to the murine OP9 cell line and OP9-DLL1. On OP9 stromal layers, a CD34highCD43dim hematopoietic precursor population is generated that is confined to vascular-like structures, reminiscent of blood islands that emerge during in vivo embryonic development. This precursor population becomes T lineage committed when exposed to OP9-DLL1 monolayers, passing sequentially through a CD34+CD7+ phenotype, a CD4+CD8+ double positive intermediate stage and eventually differentiates into a mature T cells. Polyclonal T cells are generated, cell receptor (TCR) alpha-beta and TCRgamma-delta which are functional based on proliferative capacity and production of cytokines after TCR crosslinking. Conclusion: We show that mature and functional T cells can be generated from hESC using well defined in vitro conditions. This protocol in combination with the recently described induced pluripotent cells may find clinical applicability in tumor immunology.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 711-711
Author(s):  
Srimoyee Ghosh ◽  
Sergei B Koralov ◽  
Irena Stevanovic ◽  
Mark S Sundrud ◽  
Yoshiteru Sasaki ◽  
...  

Abstract Abstract 711 Naïve CD4 T cells differentiate into diverse effector and regulatory subsets to coordinate the adaptive immune response. TH1 and TH2 effector subsets produce IFN-γ and IL-4, respectively, whereas proinflammatory TH17 cells are key regulators of autoimmune inflammation, characteristically produce IL-17 and IL-22 and differentiate in the presence of inflammatory cytokines like IL-6 and IL-21 together with TGF-β. Naive T cells can also differentiate into tissue-protective induced T regulatory (iTreg) cells. NFAT proteins are highly phosphorylated and reside in the cytoplasm of resting cells. Upon dephosphorylation by the Ca2+/calmodulin-dependent serine phosphatase calcineurin, NFAT proteins translocate to the nucleus, where they orchestrate developmental and activation programs in diverse cell types. In this study, we investigated the role of the Ca/NFAT signaling pathway in regulating T cell differentiation and the development of autoimmune diseases. We generated transgenic mice conditionally expressing a hyperactivable version of NFAT1 (AV-NFAT1) from the ROSA26 locus. To restrict AV-NFAT1 expression to the T cell compartment, ROSA26-AV-NFAT1 transgenic mice were bred to CD4-Cre transgenic mice. Naïve CD4 T cells freshly isolated from AV mice produced significantly less IL-2 but increased amounts of the inhibitory cytokine IL-10. To investigate the role of NFAT1 in the generation of TH1, TH2, Tregand TH17 cells, the respective cell types were generated from CD4 T cells of AV mice by in vitro differentiation. T cells from AV-NFAT1 mice exhibited a dysregulation of cytokine expression, producing more IFN-γ and less IL-4. While the numbers of CD4+CD25+ “natural” Treg cells in peripheral lymphoid organs and their in vitro suppressive functions were slightly decreased in AV mice, iTreg generation from CD4+CD25- T cells of AV mice as compared to wild type cells was markedly enhanced. Moreover, TH17 cells generated in vitro from CD4 T cells of AV mice in the presence of IL-6, IL-21 and TGF-β exhibited dramatically increased expression of both IL-10 and IL-17 as compared to wild type controls. To investigate putative NFAT binding sites in the IL-10 and IL-17 gene loci, we performed chromatin immunoprecipitation experiments. We show that NFAT1 can bind at the IL-17 locus at 3 out of 9 CNS regions which are accessible specifically during TH17 but not during TH1 and TH2 differentiation. Furthermore, we provide evidence that NFAT1 binds one CNS region in the IL10-locus in TH17 cells. To verify our observations in vivo, we induced experimental autoimmune encephalitis (EAE) in AV mice and wild type controls with the immunodominant myelin antigen MOG33-55 emulsified in complete Freund‘s adjuvant. While wild type animals showed a normal course of disease with development of tail and hind limb paralysis after approximately 10 days, AV mice showed a markedly weaker disease phenotype with less severe degrees of paralysis and accelerated kinetics of remission. Moreover at the peak of the response, there were fewer CD4+CD25- but more CD4+CD25+ T cells in the CNS of AV animals compared to wild type controls. Surprisingly, these cells produced significantly more IL-2, IL-17 and IFN-γ upon restimulation, even though they displayed decreased disease. In summary, our data provide strong evidence that NFAT1 contributes to the regulation of IL-10 and IL-17 expression in TH17 cells and show that increasing NFAT1 activity can ameliorate autoimmune encephalitis. This could occur in part through upregulation of IL-10 expression as observed in vitro, but is also likely to reflect increased infiltration of regulatory T cells into the CNS as well as increased conversion of conventional T cells into Foxp3+ regulatory T cells within the CNS. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 175 (5) ◽  
pp. 1307-1316 ◽  
Author(s):  
N J Vasquez ◽  
J Kaye ◽  
S M Hedrick

To study the processes of thymic development, we have established transgenic mice expressing and alpha/beta T cell antigen receptor (TCR) specific for cytochrome c associated with class II major histocompatibility complex (MHC) molecules. The transgenic TCR chains are expressed by most of the thymocytes in these mice, and these cells have been shown to efficiently mature in association with Ek- and Ab-encoded class II MHC molecules. This report describes a characterization of the negative selection of these transgenic thymocytes in vivo that is associated with the expression of As molecules. Negative selection by As molecules appears to result in the deletion of a late stage of CD4/CD8 double-positive thymocytes in that there is a virtual absence of transgenic TCR bearing CD4 single-positive thymocytes. This phenotype is accompanied by the appearance of CD4/CD8 double-negative thymocytes and peripheral T cells that are functionally antigen reactive. The process of negative selection has also been investigated using an in vitro culture system. Upon presentation of cytochrome c by Eb-expressing nonthymic antigen-presenting cells, there occurs an antigen dose-dependent deletion of the majority of CD4/CD8 double-positive thymocytes. In contrast, presentation of Staphylococcal enterotoxin A by Eb in vitro results in minimal deletion of double-positive thymocytes. In addition, we use this in vitro model to examine the effects of cyclosporin A on negative selection. In contrast to its effects on mature T cells, and the findings of others in vivo, cyclosporin A does not inhibit antigen-induced deletion of double-positive thymocytes. Finally, a comparison of the antigen dose responses for thymocyte deletion and for peripheral T cell activation indicates that double-positive thymocyte recognition is more sensitive than mature T cells to antigen recognition.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 317-323 ◽  
Author(s):  
Valéria De Mello-Coelho ◽  
Wilson Savino ◽  
Marie-Catherine Postel-Vinay ◽  
Mireille Dardenne

Intrathymic T-cell differentiation is under the control of the thymic microenvironment, which acts on maturing thymocytes via membrane as well as soluble products. Increasing data show that this process can be modulated by classical hormones, as exemplified herein by prolactin (PRL) and growth hormone (GH), largely secreted by the pituitary gland.Both PRL and GH stimulate the secretion of thymulin, a thymic hormone produced by thymic epithelial cells. Conversely, low levels of circulating thymulin parallel hypopituitary states. Interestingly, the enhancing effects of GH on thymulin seem to be mediated by insulinlike growth factor (IGF-1) since they can be abrogated with anti-IGF-1 or anti-IGF-l-receptor antibodies. The influence of PRL and GH on the thymic epithelium is pleiotropic: PRL enhancesin vivothe expression of high-molecular-weight cytokeratins and stimulatesin vitroTEC proliferation, an effect that is shared by GH and IGF-1.Differentiating T cells are also targets for the intrathymic action of PRL and GH.In vivoinoculation of a rat pituitary cell line into old rats results in restoration of the thymus, including differentiation of CD4-CD8-thymocytes into CD4+CD8+cells. Furthermore, PRL may regulate the maintenance of thymocyte viability during the double-positive stage of thymocyte differentiation.Injections of GH into aging mice increase total thymocyte numbers and the percentage of CD3-bearing cells, as well as the Concanavalin-A mitogenic response and IL-6 production by thymocytes. Interestingly, similar findings are observed in animals treated with IGF-1. Lastly, the thymic hypoplasia observed in dwarf mice can be reversed with GH treatment.In keeping with the data summarized earlier is the detection of receptors for PRL and GH on both thymocytes and thymic epithelial cells. Importantly, recent studies indicate that both cell types can produce PRL and GH intrathymically. Similarly, production of IGF-1 and expression of a corresponding receptor has also been demonstrated.In conclusion, these data strongly indicate that the thymus is physiologically under control of pituitary hormones PRL and GH. In addition to the classical endocrine pathway, paracrine and autocrine circuits are probably implicated in such control.


2004 ◽  
Vol 287 (2) ◽  
pp. C484-C493 ◽  
Author(s):  
Minenori Ishido ◽  
Katsuya Kami ◽  
Mitsuhiko Masuhara

MyoD, a myogenic regulatory factor, is rapidly expressed in adult skeletal muscles in response to denervation. However, the function(s) of MyoD expressed in denervated muscle has not been adequately elucidated. In vitro, it directly transactivates cyclin-dependent kinase inhibitor p21 (p21) and retinoblastoma protein (Rb), a downstream target of p21. These factors then act to regulate cell cycle withdrawal and antiapoptotic cell death. Using immunohistochemical approaches, we characterized cell types expressing MyoD, p21, and Rb and the relationship among these factors in the myonucleus of denervated muscles. In addition, we quantitatively examined the time course changes and expression patterns among distinct myofiber types of MyoD, p21, and Rb during denervation. Denervation induced MyoD expression in myonuclei and satellite cell nuclei, whereas p21 and Rb were found only in myonuclei. Furthermore, coexpression of MyoD, p21, and Rb was induced in the myonucleus, and quantitative analysis of these factors determined that there was no difference among the three myofiber types. These observations suggest that MyoD may function in myonuclei in response to denervation to protect against denervation-induced apoptosis via perhaps the activation of p21 and Rb, and function of MyoD expressed in satellite cell nuclei may be negatively regulated. The present study provides a molecular basis to further understand the function of MyoD expressed in the myonuclei and satellite cell nuclei of denervated skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document