scholarly journals Netrin-1 acts as a survival factor for aggressive neuroblastoma

2009 ◽  
Vol 206 (4) ◽  
pp. 833-847 ◽  
Author(s):  
Céline Delloye-Bourgeois ◽  
Julien Fitamant ◽  
Andrea Paradisi ◽  
David Cappellen ◽  
Setha Douc-Rasy ◽  
...  

Neuroblastoma (NB), the most frequent solid tumor of early childhood, is diagnosed as a disseminated disease in >60% of cases, and several lines of evidence support the resistance to apoptosis as a prerequisite for NB progression. We show that autocrine production of netrin-1, a multifunctional laminin-related molecule, conveys a selective advantage in tumor growth and dissemination in aggressive NB, as it blocks the proapoptotic activity of the UNC5H netrin-1 dependence receptors. We show that such netrin-1 up-regulation is a potential marker for poor prognosis in stage 4S and, more generally, in NB stage 4 diagnosed infants. Moreover, we propose that interference with the netrin-1 autocrine loop in malignant neuroblasts could represent an alternative therapeutic strategy, as disruption of this loop triggers in vitro NB cell death and inhibits NB metastasis in avian and mouse models.

2018 ◽  
Vol 15 (2) ◽  
pp. 230-236 ◽  
Author(s):  
Joana Ferreira da Costa ◽  
Xerardo Garcia-Mera ◽  
David Silva Poceiro ◽  
Olga Caamano

Backiground: Alzheimer's disease is a fatal, complex, neurodegenerative disease over 46 million people live with dementia in the world characterized by the presence of plaques containing β-amyloid and neuronal loss. The GPE acts as a survival factor against β-amyloid insult in brain and suggests a possible new therapeutic strategy for the treatment of Central Nervous System injuries and neurodegenerative disorders. The structural simplicity of GPE makes it a suitable lead molecule for the development of new drugs that to cross the blood-brain barrier. Objective: With these aims in mind, we embarked on a synthetic program focused on the modification of the Lproline residue of GPE in order to investigate its importance on the neuroprotective activities. Method: The general synthetic strategy involved the preparation of several modified proline residues, which were subsequently coupled to N-Boc-glycine-OH and glutamic dimethyl ester hydrochloride. Results: the mixture of compounds 11 was obtained in good yields (72%) under these conditions, and this was readily separated by column chromatography and the components were identified by 1H and 13C NMR spectral, as well as by its EI HRMS. Conclusion: Compound (±)-8 was coupled with L-glutamic dimethyl ester hydrochloride gave a mixture of dipeptides 9a and 9b in a satisfactory yield. The use of T3P as coupling agent of the mixture 10a and 10b with Boc-glycine provided a new analogue of GPE, tripeptide 11, obtained with an overall yield of 65% from (±)-1.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


Oncogene ◽  
2021 ◽  
Author(s):  
Xin-Ke Yin ◽  
Yun-Long Wang ◽  
Fei Wang ◽  
Wei-Xing Feng ◽  
Shao-Mei Bai ◽  
...  

AbstractArginine methylation is an important posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs). However, the role of PRMTs in colorectal cancer (CRC) progression is not well understood. Here we report that non-POU domain-containing octamer-binding protein (NONO) is overexpressed in CRC tissue and is a potential marker for poor prognosis in CRC patients. NONO silencing resulted in decreased proliferation, migration, and invasion of CRC cells, whereas overexpression had the opposite effect. In a xenograft model, tumors derived from NONO-deficient CRC cells were smaller than those derived from wild-type (WT) cells, and PRMT1 inhibition blocked CRC xenograft progression. A mass spectrometry analysis indicated that NONO is a substrate of PRMT1. R251 of NONO was asymmetrically dimethylated by PRMT1 in vitro and in vivo. Compared to NONO WT cells, NONO R251K mutant-expressing CRC cells showed reduced proliferation, migration, and invasion, and PRMT1 knockdown or pharmacological inhibition abrogated the malignant phenotype associated with NONO asymmetric dimethylation in both KRAS WT and mutant CRC cells. Compared to adjacent normal tissue, PRMT1 was highly expressed in the CRC zone in clinical specimens, which was correlated with poor overall survival in patients with locally advanced CRC. These results demonstrate that PRMT1-mediated methylation of NONO at R251 promotes CRC growth and metastasis, and suggest that PRMT1 inhibition may be an effective therapeutic strategy for CRC treatment regardless of KRAS mutation status.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
E Oliver ◽  
S.F Rocha ◽  
M Spaczynska ◽  
D.V Lalama ◽  
M Gomez ◽  
...  

Abstract Background Endothelial dysfunction is one of the most important hallmarks of pulmonary arterial hypertension (PAH). This leads to anomalous production of vasoactive mediators that are responsible for a higher vascular tone and a subsequent increase in pulmonary artery pressure (PAP), and to an increased vascular permeability that favors perivascular inflammation and remodeling, thus worsening the disease. Therefore, preservation of the endothelial barrier could become a relevant therapeutic strategy. Purpose In previous studies, others and we have suggested the pharmacological activation of the β3-adrenergic receptor (AR) as a potential therapeutic strategy for pulmonary hypertension (PH) due to left heart disease. However, its potential use in other forms of PH remain unclear. The aim of the present study was to elucidate whether the β3-AR agonist mirabegron could preserve pulmonary endothelium function and be a potential new therapy in PAH. Methods For this purpose, we have evaluated the effect of mirabegron (2 and 10 mg/kg·day) in different animal models, including the monocrotaline and the hypoxia-induced PAH models in rats and mice, respectively. Additionally, we have used a transgenic mouse model with endothelial overexpression of human β3-AR in a knockout background, and performed in vitro experiments with human pulmonary artery endothelial cells (HPAECs) for mechanistic experiments. Results Our results show a dose dependent effect of mirabegron in reducing mean PAP and Right Ventricular Systolic Pressure in both mice and rats. In addition, the use of transgenic mice has allowed us to determine that pulmonary endothelial cells are key mediators of the beneficial role of β3-AR pathway in ameliorating PAH. Mechanistically, we have shown in vitro that activation of β3-AR with mirabegron protects HPAECs from hypoxia-induced ROS production and mitochondrial fragmentation by restoring mitochondrial fission/fusion dynamics. Conclusions This protective effect of mirabegron would lead to endothelium integrity and preserved pulmonary endothelial function, which are necessary for a correct vasodilation, avoiding increased permeability and remodeling. Altogether, the current study demonstrates a beneficial effect of the β3-AR agonist mirabegron that could open new therapeutic avenues in PAH. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Programa de Atracciόn de Talento, Comunidad de Madrid


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii414-iii414
Author(s):  
Muh-Lii Liang ◽  
Tsung-Han Hsieh ◽  
Tai-Tong Wong

Abstract BACKGROUND Glial-lineage tumors constitute a heterogeneous group of neoplasms, comprising gliomas, oligodendrogliomas, and ependymomas, which account for 40%–50% of all pediatric central nervous system tumors. Advances in modern neuro-oncological therapeutics are aimed at improving neoadjuvant chemotherapy and deferring radiotherapy because radiation exposure may cause long-term side effects on the developing brain in young children. Despite aggressive treatment, more than half the high-grade gliomas (pHGGs) and one-third of ependymomas exhibit recurrence within 2 years of initial treatment. METHODS By using integrated bioinformatics and through experimental validation, we found that at least one gene among CCND1, CDK4, and CDK6 was overexpressed in pHGGs and ependymomas. RESULTS The use of abemaciclib, a highly selective CDK4/6 inhibitor, effectively inhibited cell proliferation and reduced the expression of cell cycle–related and DNA repair–related gene expression, which was determined through RNA-seq analysis. The efficiency of abemaciclib was validated in vitro in pHGGs and ependymoma cells and in vivo by using subcutaneously implanted ependymoma cells from patient-derived xenograft (PDX) in mouse models. Abemaciclib demonstrated the suppression of RB phosphorylation, downstream target genes of E2F, G2M checkpoint, and DNA repair, resulting in tumor suppression. CONCLUSION Abemaciclib showed encouraging results in preclinical pediatric glial-lineage tumors models and represented a potential therapeutic strategy for treating challenging tumors in children.


2020 ◽  
Vol 318 (5) ◽  
pp. H1296-H1307 ◽  
Author(s):  
Carlos J. Munoz ◽  
Ivan S. Pires ◽  
Jin Hyen Baek ◽  
Paul W. Buehler ◽  
Andre F. Palmer ◽  
...  

This study highlights the apoHb-Hp complex as a novel therapeutic strategy to attenuate the adverse systemic and microvascular responses to intravascular Hb and heme exposure. In vitro and in vivo Hb exchange and heme transfer experiments demonstrated proof-of-concept Hb/heme ligand transfer to apoHb-Hp. The apoHb-Hp complex reverses Hb- and heme-induced systemic hypertension and microvascular vasoconstriction, preserves microvascular blood flow, and functional capillary density. In summary, the unique properties of the apoHb-Hp complex prevent adverse systemic and microvascular responses to Hb and heme-albumin exposure and introduce a novel therapeutic approach to facilitate simultaneous removal of extracellular Hb and heme.


1980 ◽  
Vol 29 (2) ◽  
pp. 575-582
Author(s):  
Robert E. Baughn ◽  
Kenneth S. K. Tung ◽  
Daniel M. Musher

The in vivo and in vitro immunoglobulin G plaque-forming cell responses to sheep erythrocytes (SRBC) are nearly obliterated during disseminated syphilitic infection (3 to 8 weeks post-intravenous injection) in rabbits. Splenic and lymph node cells obtained from infected rabbits during this time period were capable of suppressing the normal in vitro responses of uninfected, SRBC-primed cells. Cell-free washings of cells from infected animals were also suppressive. This finding coupled with the fact that treatment of infected cells with proteolytic enzymes abrogated the suppressive effect constitute arguments against involvement of a specific suppressor cell population. The incidence of elevated levels of circulating immune complexes in the sera of rabbits with disseminated disease was also significantly different from that of uninfected controls or infected rabbits before the onset or after the regression of lesions. When added to cultures of lymphocytes from uninfected, SRBC-sensitized rabbits, sera containing complexes caused dose-related suppression of the in vitro immunoglobulin responses. Unlike immune complexes, no correlation was found between the presence of mucopolysaccharide materials and the stage of infection or the ability of serum to suppress the immunoglobulin responses to SRBC.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Liying Cai ◽  
Brian H Johnstone ◽  
Zhong Liang ◽  
Dmitry Traktuev ◽  
Todd G Cook ◽  
...  

Background Paracrine stimulation of endogenous repair, rather than direct tissue regeneration, is increasingly accepted as a major mode of therapeutic stem and progenitor cell action; yet, this principle has not been fully established in vivo . Adipose-derived stem cells (ASCs) secrete many factors and promote reperfusion and tissue repair in ischemia models. RNA interference was used to silence the expression of the abundant protein, hepatocyte growth factor (HGF), to determine its contribution to ASC potency in vivo . Methods and Results Dual-cassette lentiviral vectors, expressing GFP and either a small hairpin RNA (shRNA) specific for HGF mRNA (shHGF) or a control sequence (shCtrl), were used to stably transduce ASCs (ASC-shHGF or ASC-shCtrl). ASC-shHGF secreted 5-fold less HGF, which resulted in a reduced ability of these cells to promote survival, proliferation and migration of mature and progenitor endothelial cells in vitro ( p <0.01). HGF knockdown also severely impaired the ability of ASCs to promote reperfusion in a mouse hindlimb ischemia model. Perfusion of the ischemic leg at 15 d in mice treated with ASC-Ctrl was 84±4%, compared to only 69±5% for ASC-shHGF ( p <0.05). Even so, ASC-shHGF retained residual activity as indicated by greater reperfusion ( p <0.05) than with saline treatment (58±6%). Capillary densities in ischemic tissues from each group followed a similar rank order (ASC-Ctrl>ASC-shHGF>saline) ( p <0.05 between each group). While there was no difference in total GFP + cells in ischemic limbs at 5 d after infusion, indicating similar homing potentials, 3-fold fewer ASC-shHGF were present in ischemic tissues at 15 d compared to ASC-shCtrl ( p <0.01). This was accompanied by an increase in TUNEL-positive ASC-shHGF cells (61 ± 0.1%) compared to ASC-Ctrl (41% ± 3.2%) in ischemic tissues at 5 d ( p <0.01); suggesting that attenuated potency of ASC-shHGF was related to reduced survival in ischemic tissues. Conclusions These results indicate that secretion of HGF is critically important for ASC potency. In addition to promoting endogenous repair, the data suggest that an important effect of HGF is autocrine promotion of ASC survival in ischemic tissue. Enhanced donor cell survival is an important goal for increasing the efficacy of cell therapy.


RMD Open ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. e000744 ◽  
Author(s):  
Kerstin Klein

The reading of acetylation marks on histones by bromodomain (BRD) proteins is a key event in transcriptional activation. Small molecule inhibitors targeting bromodomain and extra-terminal (BET) proteins compete for binding to acetylated histones. They have strong anti-inflammatory properties and exhibit encouraging effects in different cell types in vitro and in animal models resembling rheumatic diseases in vivo. Furthermore, recent studies that focus on BRD proteins beyond BET family members are discussed.


Sign in / Sign up

Export Citation Format

Share Document