scholarly journals The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition

2016 ◽  
Vol 213 (8) ◽  
pp. 1459-1477 ◽  
Author(s):  
Goro Sashida ◽  
Changshan Wang ◽  
Takahisa Tomioka ◽  
Motohiko Oshima ◽  
Kazumasa Aoyama ◽  
...  

EZH2 is a component of polycomb repressive complex 2 (PRC2) and functions as an H3K27 methyltransferase. Loss-of-function mutations in EZH2 are associated with poorer outcomes in patients with myeloproliferative neoplasms (MPNs), particularly those with primary myelofibrosis (MF [PMF]). To determine how EZH2 insufficiency is involved in the pathogenesis of PMF, we generated mice compound for an Ezh2 conditional deletion and activating mutation in JAK2 (JAK2V617F) present in patients with PMF. The deletion of Ezh2 in JAK2V617F mice markedly promoted the development of MF, indicating a tumor suppressor function for EZH2 in PMF. The loss of Ezh2 in JAK2V617F hematopoietic cells caused significant reductions in H3K27 trimethylation (H3K27me3) levels, resulting in an epigenetic switch to H3K27 acetylation (H3K27ac). These epigenetic switches were closely associated with the activation of PRC2 target genes including Hmga2, an oncogene implicated in the pathogenesis of PMF. The treatment of JAK2V617F/Ezh2-null mice with a bromodomain inhibitor significantly attenuated H3K27ac levels at the promoter regions of PRC2 targets and down-regulated their expression, leading to the abrogation of MF-initiating cells. Therefore, an EZH2 insufficiency not only cooperated with active JAK2 to induce MF, but also conferred an oncogenic addiction to the H3K27ac modification in MF-initiating cells that was capable of being restored by bromodomain inhibition.

Blood ◽  
2010 ◽  
Vol 116 (12) ◽  
pp. 2141-2151 ◽  
Author(s):  
Benjamin Drogat ◽  
Joanna Kalucka ◽  
Laura Gutiérrez ◽  
Hamida Hammad ◽  
Steven Goossens ◽  
...  

Abstract To determine the role of vascular endothelial growth factor (Vegf) in embryonic erythroid development we have deleted or overexpressed Vegf specifically in the erythroid lineage using the EpoR-iCre transgenic line in combination with Cre/loxP conditional gain and loss of function Vegf alleles. ROSA26 promoter-based expression of the Vegf164 isoform in the early erythroid lineage resulted in a differentiation block of primitive erythroid progenitor (EryP) development and a partial block in definitive erythropoiesis between the erythroid burst-forming unit and erythroid colony-forming unit stages. Decreased mRNA expression levels of the key erythroid transcription factor Gata1 were causally linked to this phenotype. Conditional deletion of Vegf within the erythroid lineage was associated with increased Gata1 levels and increased erythroid differentiation. Expression of a ROSA26-based GATA2 transgene rescued Gata1 mRNA levels and target genes and restored erythroid differentiation in our Vegf gain of function model. These results demonstrate that Vegf modulates Gata1 expression levels in vivo and provides new molecular insight into Vegf's ability to modulate erythropoiesis.


2019 ◽  
Vol 47 (4) ◽  
pp. 1187-1196 ◽  
Author(s):  
Silvia Costa ◽  
Caroline Dean

Abstract Polycomb-mediated epigenetic silencing is central to correct growth and development in higher eukaryotes. The evolutionarily conserved Polycomb repressive complex 2 (PRC2) transcriptionally silences target genes through a mechanism requiring the histone modification H3K27me3. However, we still do not fully understand what defines Polycomb targets, how their expression state is switched from epigenetically ON to OFF and how silencing is subsequently maintained through many cell divisions. An excellent system in which to dissect the sequence of events underlying an epigenetic switch is the Arabidopsis FLC locus. Exposure to cold temperatures progressively induces a PRC2-dependent switch in an increasing proportion of cells, through a mechanism that is driven by the local chromatin environment. Temporally distinct phases of this silencing mechanism have been identified. First, the locus is transcriptionally silenced in a process involving cold-induced antisense transcripts; second, nucleation at the first exon/intron boundary of a Polycomb complex containing cold-induced accessory proteins induces a metastable epigenetically silenced state; third, a Polycomb complex with a distinct composition spreads across the locus in a process requiring DNA replication to deliver long-term epigenetic silencing. Detailed understanding from this system is likely to provide mechanistic insights important for epigenetic silencing in eukaryotes generally.


2020 ◽  
Vol 48 (11) ◽  
pp. 5953-5966
Author(s):  
Soonkap Kim ◽  
Sophie J M Piquerez ◽  
Juan S Ramirez-Prado ◽  
Emmanouil Mastorakis ◽  
Alaguraj Veluchamy ◽  
...  

Abstract The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5′ and 3′ ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5′ end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3′ ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5′ and 3′ ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions.


2020 ◽  
Vol 15 (5) ◽  
pp. 415-419
Author(s):  
Azhwar Raghunath ◽  
Raju Nagarajan ◽  
Ekambaram Perumal

Background: Antioxidant Response Elements (ARE) play a key role in the expression of Nrf2 target genes by regulating the Keap1-Nrf2-ARE pathway, which offers protection against toxic agents and oxidative stress-induced diseases. Objective: To develop a database of putative AREs for all the genes in the zebrafish genome. This database will be helpful for researchers to investigate Nrf2 regulatory mechanisms in detail. Methods: To facilitate researchers functionally characterize zebrafish AREs, we have developed a database of AREs, Zebrafish Antioxidant Response Element Database (ZFARED), for all the protein-coding genes including antioxidant and mitochondrial genes in the zebrafish genome. The front end of the database was developed using HTML, JavaScript, and CSS and tested in different browsers. The back end of the database was developed using Perl scripts and Perl-CGI and Perl- DBI modules. Results: ZFARED is the first database on the AREs in zebrafish, which facilitates fast and efficient searching of AREs. AREs were identified using the in-house developed Perl algorithms and the database was developed using HTML, JavaScript, and Perl-CGI scripts. From this database, researchers can access the AREs based on chromosome number (1 to 25 and M for mitochondria), strand (positive or negative), ARE pattern and keywords. Users can also specify the size of the upstream/promoter regions (5 to 30 kb) from transcription start site to access the AREs located in those specific regions. Conclusion: ZFARED will be useful in the investigation of the Keap1-Nrf2-ARE pathway and its gene regulation. ZFARED is freely available at http://zfared.buc.edu.in/.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


Author(s):  
Julian Baumeister ◽  
Tiago Maié ◽  
Nicolas Chatain ◽  
Lin Gan ◽  
Barbora Weinbergerova ◽  
...  

AbstractMyeloproliferative neoplasms (MPN), comprising essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF), are hematological disorders of the myeloid lineage characterized by hyperproliferation of mature blood cells. The prediction of the clinical course and progression remains difficult and new therapeutic modalities are required. We conducted a CD34+ gene expression study to identify signatures and potential biomarkers in the different MPN subtypes with the aim to improve treatment and prevent the transformation from the rather benign chronic state to a more malignant aggressive state. We report here on a systematic gene expression analysis (GEA) of CD34+ peripheral blood or bone marrow cells derived from 30 patients with MPN including all subtypes (ET (n = 6), PV (n = 11), PMF (n = 9), secondary MF (SMF; post-ET-/post-PV-MF; n = 4)) and six healthy donors. GEA revealed a variety of differentially regulated genes in the different MPN subtypes vs. controls, with a higher number in PMF/SMF (200/272 genes) than in ET/PV (132/121). PROGENγ analysis revealed significant induction of TNFα/NF-κB signaling (particularly in SMF) and reduction of estrogen signaling (PMF and SMF). Consistently, inflammatory GO terms were enriched in PMF/SMF, whereas RNA splicing–associated biological processes were downregulated in PMF. Differentially regulated genes that might be utilized as diagnostic/prognostic markers were identified, such as AREG, CYBB, DNTT, TIMD4, VCAM1, and S100 family members (S100A4/8/9/10/12). Additionally, 98 genes (including CLEC1B, CMTM5, CXCL8, DACH1, and RADX) were deregulated solely in SMF and may be used to predict progression from early to late stage MPN. Graphical abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia M. Kempf ◽  
Sabrina Weser ◽  
Michael D. Bartoschek ◽  
Klaus H. Metzeler ◽  
Binje Vick ◽  
...  

AbstractChemotherapy resistance is the main impediment in the treatment of acute myeloid leukaemia (AML). Despite rapid advances, the various mechanisms inducing resistance development remain to be defined in detail. Here we report that loss-of-function mutations (LOF) in the histone methyltransferase EZH2 have the potential to confer resistance against the chemotherapeutic agent cytarabine. We identify seven distinct EZH2 mutations leading to loss of H3K27 trimethylation via multiple mechanisms. Analysis of matched diagnosis and relapse samples reveal a heterogenous regulation of EZH2 and a loss of EZH2 in 50% of patients. We confirm that loss of EZH2 induces resistance against cytarabine in the cell lines HEK293T and K562 as well as in a patient-derived xenograft model. Proteomics and transcriptomics analysis reveal that resistance is conferred by upregulation of multiple direct and indirect EZH2 target genes that are involved in apoptosis evasion, augmentation of proliferation and alteration of transmembrane transporter function. Our data indicate that loss of EZH2 results in upregulation of its target genes, providing the cell with a selective growth advantage, which mediates chemotherapy resistance.


2020 ◽  
Vol 318 (3) ◽  
pp. G419-G427 ◽  
Author(s):  
Tatsuhide Nabeshima ◽  
Shin Hamada ◽  
Keiko Taguchi ◽  
Yu Tanaka ◽  
Ryotaro Matsumoto ◽  
...  

The activation of the Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) pathway contributes to cancer progression in addition to oxidative stress responses. Loss-of-function Keap1 mutations were reported to activate Nrf2, leading to cancer progression. We examined the effects of Keap1 deletion in a cholangiocarcinoma mouse model using a mutant K-ras/ p53 mouse. Introduction of the Keap1 deletion into liver-specific mutant K-ras/ p53 expression resulted in the formation of invasive cholangiocarcinoma. Comprehensive analyses of the gene expression profiles identified broad upregulation of Nrf2-target genes such as Nqo1 and Gstm1 in the Keap1-deleted mutant K-ras/ p53 expressing livers, accompanied by upregulation of cholangiocyte-related genes. Among these genes, the transcriptional factor Sox9 was highly expressed in the dysplastic bile duct. The Keap-Nrf2-Sox9 axis might serve as a novel therapeutic target for cholangiocarcinoma. NEW & NOTEWORTHY The Keap1-Nrf2 system has a wide variety of effects in addition to the oxidative stress response in cancer cells. Addition of the liver-specific Keap1 deletion to mice harboring mutant K-ras and p53 accelerated cholangiocarcinoma formation, together with the hallmarks of Nrf2 activation. This process involved the expansion of Sox9-positive cells, indicating increased differentiation toward the cholangiocyte phenotype.


Sign in / Sign up

Export Citation Format

Share Document