scholarly journals Cell-intrinsic adrenergic signaling controls the adaptive NK cell response to viral infection

2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Carlos Diaz-Salazar ◽  
Regina Bou-Puerto ◽  
Adriana M. Mujal ◽  
Colleen M. Lau ◽  
Madlaina von Hoesslin ◽  
...  

Natural killer (NK) cells are innate lymphocytes that exhibit adaptive features, such as clonal expansion and memory, during viral infection. Although activating receptor engagement and proinflammatory cytokines are required to drive NK cell clonal expansion, additional stimulatory signals controlling their proliferation remain to be discovered. Here, we describe one such signal that is provided by the adrenergic nervous system, and demonstrate that cell-intrinsic adrenergic signaling is required for optimal adaptive NK cell responses. Early during mouse cytomegalovirus (MCMV) infection, NK cells up-regulated Adrb2 (which encodes the β2-adrenergic receptor), a process dependent on IL-12 and STAT4 signaling. NK cell–specific deletion of Adrb2 resulted in impaired NK cell expansion and memory during MCMV challenge, in part due to a diminished proliferative capacity. As a result, NK cell-intrinsic adrenergic signaling was required for protection against MCMV. Taken together, we propose a novel role for the adrenergic nervous system in regulating circulating lymphocyte responses to viral infection.

2016 ◽  
Vol 213 (2) ◽  
pp. 225-233 ◽  
Author(s):  
Sharline Madera ◽  
Moritz Rapp ◽  
Matthew A. Firth ◽  
Joshua N. Beilke ◽  
Lewis L. Lanier ◽  
...  

Type I interferon (IFN) is crucial in host antiviral defense. Previous studies have described the pleiotropic role of type I IFNs on innate and adaptive immune cells during viral infection. Here, we demonstrate that natural killer (NK) cells from mice lacking the type I IFN-α receptor (Ifnar−/−) or STAT1 (which signals downstream of IFNAR) are defective in expansion and memory cell formation after mouse cytomegalovirus (MCMV) infection. Despite comparable proliferation, Ifnar−/− NK cells showed diminished protection against MCMV infection and exhibited more apoptosis compared with wild-type NK cells. Furthermore, we show that Ifnar−/− NK cells express increased levels of NK group 2 member D (NKG2D) ligands during viral infection and are susceptible to NK cell–mediated fratricide in a perforin- and NKG2D-dependent manner. Adoptive transfer of Ifnar−/− NK cells into NK cell–deficient mice reverses the defect in survival and expansion. Our study reveals a novel type I IFN–dependent mechanism by which NK cells evade mechanisms of cell death after viral infection.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Michal Pyzik ◽  
Eve-Marie Gendron-Pontbriand ◽  
Silvia M. Vidal

Clinical and experimental data indicate that a subset of innate lymphocytes, natural killer (NK) cells, plays a crucial role in the response against herpesviruses, especially cytomegaloviruses (CMV). Indeed, in mice, NK cells, due to the expression of germline encoded Ly49 receptors, possess multiple mechanisms to recognize CMV infection. Classically, this results in NK cell activation and the destruction of the infected cells. More recently, however, this unique host-pathogen interaction has permitted the discovery of novel aspects of NK cell biology, implicating them in the regulation of adaptive immune responses as well as in the development of immunological memory. Here, we will concisely review the newly acquired evidence pertaining to NK cell Ly49-dependent recognition of MCMV-infected cell and the ensuing NK cell regulatory responses.


2021 ◽  
Vol 39 (1) ◽  
pp. 417-447
Author(s):  
Adriana M. Mujal ◽  
Rebecca B. Delconte ◽  
Joseph C. Sun

Natural killer (NK) cells are innate lymphocytes that provide critical host defense against pathogens and cancer. Originally heralded for their early and rapid effector activity, NK cells have been recognized over the last decade for their ability to undergo adaptive immune processes, including antigen-driven clonal expansion and generation of long-lived memory. This review presents an overview of how NK cells lithely partake in both innate and adaptive responses and how this versatility is manifest in human NK cell–mediated immunity.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


Author(s):  
Ethan G Aguilar ◽  
Cordelia Dunai ◽  
Sean J. Judge ◽  
Anthony Elston Zamora ◽  
Lam T. Khuat ◽  
...  

Natural Killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class I molecules resulting in differential responses upon activation in a process called "licensing" or "arming". NK cells expressing receptors that bind self-MHC are considered licensed due to augmented effector lytic function capability compared to unlicensed subsets. However, we demonstrated unlicensed NK subsets instead positively regulate the adaptive T cell response during viral infections due to localization and cytokine production. We demonstrate here that the differential effects of the two types of NK subsets is contingent on the environment using viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) MCMV leads to a loss of licensing-associated differences as compared to mice with low-dose infection, as the unlicensed NK subset no longer localized in lymph nodes (LN), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled with the phenotypes of both human and mouse NK cells in a HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to effects of subset depletion in T-replete models, the licensed NK cell subsets still dominated anti-viral responses post-HSCT. Overall, our results highlight the intricate tuning of the NK cells and how it impacts overall immune responses with regard to licensing patterns, as it is dependent on the level of stimulation and their activation status.


2019 ◽  
Vol 28 (9-10) ◽  
pp. 1155-1160 ◽  
Author(s):  
J. Xu ◽  
Y. Wang ◽  
H. Jiang ◽  
M. Sun ◽  
J. Gao ◽  
...  

Multiple sclerosis is a disease characterized by inflammation and demyelination located in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for multiple sclerosis (MS). Although the roles of T cells in MS/EAE have been well investigated, little is known about the functions of other immune cells in the neuroinflammation model. Here we found that an essential cytokine transforming growth factor β (TGF-β) which could mediate the differentiation of Th17/regulatory T cells was implicated in the natural killer (NK) cells’ activity in EAE. In EAE mice, TGF-β expression was first increased at the onset and then decreased at the peak, but the expressions of TGF-β receptors and downstream molecules were not affected in EAE. When we immunized the mice with MOG antigen, it was revealed that TGF-β treatment reduced susceptibility to EAE with a lower clinical score than the control mice without TGF-β. Consistently, inflammatory cytokine production was reduced in the TGF-β treated group, especially with downregulated pathogenic interleukin-17 in the central nervous system tissue. Furthermore, TGF-β could increase the transcription level of NK cell marker NCR1 both in the spleen and in the CNS without changing other T cell markers. Meanwhile TGF-β promoted the proliferation of NK cell proliferation. Taken together, our data demonstrated that TGF-β could confer protection against EAE model in mice through NK cells, which would be useful for the clinical therapy of MS.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Melissa Mavers ◽  
Alice Bertaina

Natural killer (NK) cells are a population of cytotoxic innate lymphocytes that evolved prior to their adaptive counterparts and constitute one of the first lines of defense against infected/mutated cells. Several studies have shown that in patients with acute leukemia given haploidentical hematopoietic stem cell transplantation, donor-derived NK cells play a key role in the eradication of cancer cells. The antileukemic effect is mostly related to the presence of “alloreactive” NK cells, that is, mature KIR+ NK cells that express inhibitory KIR mismatched with HLA class I (KIR-L) of the patient. A genotypic analysis detecting KIR B haplotype and the relative B content is an additional donor selection criterion. These data provided the rationale for implementing phase I/II clinical trials of adoptive infusion of either selected or ex vivo-activated NK cells, often from an HLA-mismatched donor. In this review, we provide a historical perspective on the role played by NK cells in patients with acute leukemia, focusing also on the various approaches to adoptive NK cell therapy and the unresolved issues therein. In addition, we outline new methods to enhance NK activity, including anti-KIR monoclonal antibody, bi-/trispecific antibodies linking NK cells to cytokines and/or target antigens, and CAR-engineered NK cells.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 573 ◽  
Author(s):  
Donal O’Shea ◽  
Andrew E. Hogan

Natural killer (NK) cells are a population of lymphocytes which classically form part of the innate immune system. They are defined as innate lymphocytes, due to their ability to kill infected or transformed cells without prior activation. In addition to their cytotoxic abilities, NK cells are also rapid producers of inflammatory cytokines such as interferon gamma (IFN-γ) and are therefore a critical component of early immune responses. Due to these unique abilities, NK cells are a very important component of host protection, especially anti-tumour and anti-viral immunity. Obesity is a worldwide epidemic, with over 600 million adults and 124 million children now classified as obese. It is well established that individuals who are obese are at a higher risk of many acute and chronic conditions, including cancer and viral infections. Over the past 10 years, many studies have investigated the impact of obesity on NK cell biology, detailing systemic dysregulation of NK cell functions. More recently, several studies have investigated the role of NK cells in the homeostasis of adipose tissue and the pathophysiology of obesity. In this review, we will discuss in detail these studies and focus on emerging data detailing the metabolic mechanisms altering NK cells in obesity.


2009 ◽  
Vol 206 (3) ◽  
pp. 515-523 ◽  
Author(s):  
Agnieszka Kielczewska ◽  
Michal Pyzik ◽  
Tianhe Sun ◽  
Astrid Krmpotic ◽  
Melissa B. Lodoen ◽  
...  

Natural killer (NK) cells are crucial in resistance to certain viral infections, but the mechanisms used to recognize infected cells remain largely unknown. Here, we show that the activating Ly49P receptor recognizes cells infected with mouse cytomegalovirus (MCMV) by a process that requires the presence of H2-Dk and the MCMV m04 protein. Using H2 chimeras between H2-Db and -Dk, we demonstrate that the H2-Dk peptide-binding platform is required for Ly49P recognition. We identified m04 as a viral component necessary for recognition using a panel of MCMV-deletion mutant viruses and complementation of m04-deletion mutant (Δm04) virus infection. MA/My mice, which express Ly49P and H2-Dk, are resistant to MCMV; however, infection with Δm04 MCMV abrogates resistance. Depletion of NK cells in MA/My mice abrogates their resistance to wild-type MCMV infection, but does not significantly affect viral titers in mice infected with Δm04 virus, implicating NK cells in host protection through m04-dependent recognition. These findings reveal a novel mechanism of major histocompatability complex class I–restricted recognition of virally infected cells by an activating NK cell receptor.


1991 ◽  
Vol 173 (5) ◽  
pp. 1053-1063 ◽  
Author(s):  
R M Welsh ◽  
J O Brubaker ◽  
M Vargas-Cortes ◽  
C L O'Donnell

The activation, proliferation, and antiviral properties of natural killer (NK) cells were examined in severe combined immunodeficiency (SCID) mice to determine the influence of mature T or B cells on virus-induced NK cell functions and to more conclusively determine the antiviral properties of prototypical CD3- NK cells. NK cells were activated to high levels of cytotoxicity 3 d after infection of mice with lymphocytic choriomeningitis virus (LCMV) or murine cytomegalovirus (MCMV). Analyses of spleen leukocytes from LCMV-infected mice by a variety of techniques indicated that the NK cells proliferated and increased in number during infection. Propidium iodide staining of the DNA of cycling cells revealed that the great majority of proliferating spleen leukocytes 3 d after LCMV infection was of the NK cell phenotype (CD3-, Ig-, Mac-1+, CZ1+, 50% Thy-1+), in contrast to uninfected mice, whose proliferating cells were predominantly of other lineages. Analyses of the NK cell responses over a 2 wk period in control CB17 mice infected with MCMV indicated a sharp rise in serum interferon (IFN) and spleen NK cell activity early (days 3-5) in infection, followed by sharp declines at later stages. In SCID mice the IFN levels continued to rise over a 10-d period, whereas the NK cell response peaked on day 3-5 and gradually tapered. In contrast to the immunocompetent CB17 mice, SCID mice did not clear the MCMV infection and eventually succumbed. SCID mice, again in contrast to immunocompetent CB17 mice, also failed to clear infections with LCMV and Pichinde virus (PV); these mice, infected as adults, did not die but instead developed long-term persistent infections. Depletion of the NK cells in vivo with antiserum to asialo GM1 rendered both SCID and CB17 control mice much more sensitive to MCMV infection, as shown by titers of virus in organs and by survival curves. In contrast, similar depletions of NK cells did not enhance the titers of the NK cell-resistant virus, LCMV. Two variants of PV, one sensitive to NK cells and the other selected for resistance to NK cells by in vivo passage, were also tested in NK cell-depleted SCID mice. The NK-sensitive PV replicated to higher titers in NK cell-depleted SCID mice, whereas the titers of the NK cell-resistant PV were the same, whether or not the mice had NK cells. These experiments support the concept that CD3- prototypical NK cells mediate resistance to NK cell-sensitive viruses via a mechanism independent of antiviral or "natural" antibody.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document