scholarly journals β2-adrenergic signals downregulate the innate immune response and reduce host resistance to viral infection

2020 ◽  
Vol 217 (4) ◽  
Author(s):  
Elisabeth Wieduwild ◽  
Mathilde J. Girard-Madoux ◽  
Linda Quatrini ◽  
Caroline Laprie ◽  
Lionel Chasson ◽  
...  

In humans, psychological stress has been associated with a higher risk of infectious illness. However, the mechanisms by which the stress pathway interferes with host response to pathogens remain unclear. We demonstrate here a role for the β2-adrenergic receptor (β2-AR), which binds the stress mediators adrenaline and noradrenaline, in modulating host response to mouse cytomegalovirus (MCMV) infection. Mice treated with a β2-AR agonist were more susceptible to MCMV infection. By contrast, β2-AR deficiency resulted in a better clearance of the virus, less tissue damage, and greater resistance to MCMV. Mechanistically, we found a correlation between higher levels of IFN-γ production by liver natural killer (NK) cells and stronger resistance to MCMV. However, the control of NK cell IFN-γ production was not cell intrinsic, revealing a cell-extrinsic downregulation of the antiviral NK cell response by adrenergic neuroendocrine signals. This pathway reduces host immune defense, suggesting that the blockade of the β2-AR signaling could be used to increase resistance to infectious diseases.

2012 ◽  
Vol 209 (5) ◽  
pp. 947-954 ◽  
Author(s):  
Joseph C. Sun ◽  
Sharline Madera ◽  
Natalie A. Bezman ◽  
Joshua N. Beilke ◽  
Mark H. Kaplan ◽  
...  

Although natural killer (NK) cells are classified as innate immune cells, recent studies demonstrate that NK cells can become long-lived memory cells and contribute to secondary immune responses. The precise signals that promote generation of long-lived memory NK cells are unknown. Using cytokine receptor-deficient mice, we show that interleukin-12 (IL-12) is indispensible for mouse cytomegalovirus (MCMV)-specific NK cell expansion and generation of memory NK cells. In contrast to wild-type NK cells that proliferated robustly and resided in lymphoid and nonlymphoid tissues for months after MCMV infection, IL-12 receptor–deficient NK cells failed to expand and were unable to mediate protection after MCMV challenge. We further demonstrate that a STAT4-dependent IFN-γ–independent mechanism contributes toward the generation of memory NK cells during MCMV infection. Understanding the full contribution of inflammatory cytokine signaling to the NK cell response against viral infection will be of interest for the development of vaccines and therapeutics.


2005 ◽  
Vol 79 (1) ◽  
pp. 661-667 ◽  
Author(s):  
Joy Loh ◽  
Dortha T. Chu ◽  
Andrew K. O'Guin ◽  
Wayne M. Yokoyama ◽  
Herbert W. Virgin

ABSTRACT Natural killer (NK) cells are critical for innate regulation of the acute phase of murine cytomegalovirus (MCMV) infection and have been reported to utilize perforin (Pfp)- and gamma interferon (IFN-γ)-dependent effector mechanisms in an organ-specific manner to regulate MCMV infection in the spleen and liver. In this study, we further examined the roles of NK cells, Pfp, and IFN-γ in innate immunity to MCMV infection. With the recently described NK cell-deficient (NKD) mouse, we confirmed previous findings that NK cells, but not NKT cells, are required for control of the acute phase of MCMV infection in spleen and liver cells. Interestingly, we found that Pfp and IFN-γ are each important for regulating MCMV replication in both the spleen and the liver. Moreover, NK cells can regulate MCMV infection in the spleens and livers of Pfp−/− mice in a Pfp-independent manner and can use an IFN-γ-independent mechanism to control MCMV infection in IFN-γ−/− mice. Thus, contrary to previous reports, NK cells utilize both Pfp and IFN-γ to control MCMV infection in the spleen and liver.


2001 ◽  
Vol 193 (4) ◽  
pp. 483-496 ◽  
Author(s):  
Rachel M. Presti ◽  
Daniel L. Popkin ◽  
Megan Connick ◽  
Susanne Paetzold ◽  
Herbert W. Virgin

Interferon (IFN)-γ and macrophages (Mϕ) play key roles in acute, persistent, and latent murine cytomegalovirus (MCMV) infection. IFN-γ mechanisms were compared in embryonic fibroblasts (MEFs) and bone marrow Mϕ (BMMϕ). IFN-γ inhibited MCMV replication in a signal transducer and activator of transcription (STAT)-1α–dependent manner much more effectively in BMMϕ (∼100-fold) than MEF (5–10-fold). Although initial STAT-1α activation by IFN-γ was equivalent in MEF and BMMϕ, microarray analysis demonstrated that IFN-γ regulates different sets of genes in BMMϕ compared with MEFs. IFN-γ inhibition of MCMV growth was independent of known mechanisms involving IFN-α/β, tumor necrosis factor α, inducible nitric oxide synthase, protein kinase RNA activated (PKR), RNaseL, and Mx1, and did not involve IFN-γ–induced soluble mediators. To characterize this novel mechanism, we identified the viral targets of IFN-γ action, which differed in MEF and BMMϕ. In BMMϕ, IFN-γ reduced immediate early 1 (IE1) mRNA during the first 3 h of infection, and significantly reduced IE1 protein expression for 96 h. Effects of IFN-γ on IE1 protein expression were independent of RNaseL and PKR. In contrast, IFN-γ had no significant effects on IE1 protein or mRNA expression in MEFs, but did decrease late gene mRNA expression. These studies in primary cells define a novel mechanism of IFN-γ action restricted to Mϕ, a cell type key for MCMV pathogenesis and latency.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Roman M. Müller-Heck ◽  
Björn Bösken ◽  
Ivo Michiels ◽  
Marcel Dudda ◽  
Marcus Jäger ◽  
...  

Major traumatic and surgical injury increase the risk for infectious complications due to immune dysregulation. Upon stimulation with interleukin (IL) 12 by monocyte/macrophages, natural killer (NK) cells release interferon (IFN) γ that supports the elimination of the pathogen. In the present study, we investigated the impact of invasive spine surgery on the relationship between monocytes and NK cells upon exposure to Staphylococcus aureus. Mononuclear cells and serum were isolated from peripheral blood of patients before and up to 8 d after surgery and stimulated with inactivated S. aureus bacteria. NK cell and monocyte function were determined by flow cytometry. NK cells continuously lost their ability to produce IFN-γ during the first week after surgery independently from monocyte-derived IL-12 secretion. IFN-γ synthesis was minimal on day 8 and was associated with decreased expression of the IL-12 receptor and activation of transcription factors required for IFNG gene transcription. Addition of recombinant IL-12 could at least partially restore NK cell function. Pre-operative levels of growth/differentiation factor (GDF) 15 in the serum correlated with the extent of NK cell suppression and with hospitalization. Thus, NK cell suppression after major surgery might represent a therapeutic target to improve the immune defense against opportunistic infections.


2015 ◽  
Vol 89 (15) ◽  
pp. 7922-7931 ◽  
Author(s):  
Bailey E. Freeman ◽  
Hans-Peter Raué ◽  
Ann B. Hill ◽  
Mark K. Slifka

ABSTRACTNatural killer (NK) cells provide a first line of defense against infection via the production of antiviral cytokines and direct lysis of target cells. Cytokines such as interleukin 12 (IL-12) and IL-18 are critical regulators of NK cell activation, but much remains to be learned about how cytokines interact to regulate NK cell function. Here, we have examined cytokine-mediated activation of NK cells during infection with two natural mouse pathogens, lymphocytic choriomeningitis virus (LCMV) and murine cytomegalovirus (MCMV). Using a systematic screen of 1,849 cytokine pairs, we identified the most potent combinations capable of eliciting gamma interferon (IFN-γ) production in NK cells. We observed that NK cell responses to cytokine stimulation were reduced 8 days after acute LCMV infection but recovered to preinfection levels by 60 days postinfection. In contrast, during MCMV infection, NK cell responses to cytokines remained robust at all time points examined. Ly49H-positive (Ly49H+) NK cells recognizing viral ligand m157 showed preferential proliferation during early MCMV infection. A population of these cells was still detected beyond 60 days postinfection, but these divided cells did not demonstrate enhanced IFN-γ production in response to innate cytokine stimulation. Instead, the maturation state of the NK cells (as determined by CD11b or CD27 surface phenotype) was predictive of responsiveness to cytokines, regardless of Ly49H expression. These results help define cytokine interactions that regulate NK cell activation and highlight variations in NK cell function during two unrelated viral infections.IMPORTANCENatural killer cells play an important role in immunity to many viral infections. From an initial screen of 1,849 cytokine pairs, we identified the most stimulatory cytokine combinations capable of inducing IFN-γ production by NK cells. Ly49H+NK cells, which can be directly activated by MCMV protein m157, preferentially proliferated during MCMV infection but did not show enhanced IFN-γ production following directex vivocytokine stimulation. Instead, mature CD11b+and/or CD27+NK cells responded similarly to innate cytokine stimulation regardless of Ly49H expression. Collectively, our data provide a better foundation for understanding cytokine-mediated NK cell activation during viral infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


2007 ◽  
Vol 82 (6) ◽  
pp. 3021-3030 ◽  
Author(s):  
Kevin B. Walsh ◽  
Melissa B. Lodoen ◽  
Robert A. Edwards ◽  
Lewis L. Lanier ◽  
Thomas E. Lane

ABSTRACT Infection of SCID mice with a recombinant murine coronavirus (mouse hepatitis virus [MHV]) expressing the T-cell chemoattractant CXC chemokine ligand 10 (CXCL10) resulted in increased survival and reduced viral burden within the brain and liver compared to those of mice infected with an isogenic control virus (MHV), supporting an important role for CXCL10 in innate immune responses following viral infection. Enhanced protection in MHV-CXCL10-infected mice correlated with increased gamma interferon (IFN-γ) production by infiltrating natural killer (NK) cells within the brain and reduced liver pathology. To explore the underlying mechanisms associated with protection from disease in MHV-CXCL10-infected mice, the functional contributions of the NK cell-activating receptor NKG2D in host defense were examined. The administration of an NKG2D-blocking antibody to MHV-CXCL10-infected mice did not reduce survival, dampen IFN-γ production in the brain, or affect liver pathology. However, NKG2D neutralization increased viral titers within the liver, suggesting a protective role for NKG2D signaling in this organ. These data indicate that (i) CXCL10 enhances innate immune responses, resulting in protection from MHV-induced neurological and liver disease; (ii) elevated NK cell IFN-γ expression in the brain of MHV-CXCL10-infected mice occurs independently of NKG2D; and (iii) NKG2D signaling promotes antiviral activity within the livers of MHV-infected mice that is not dependent on IFN-γ and tumor necrosis factor alpha secretion.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


2005 ◽  
Vol 201 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Astrid Krmpotic ◽  
Milena Hasan ◽  
Andrea Loewendorf ◽  
Tanja Saulig ◽  
Anne Halenius ◽  
...  

The NK cell–activating receptor NKG2D interacts with three different cellular ligands, all of which are regulated by mouse cytomegalovirus (MCMV). We set out to define the viral gene product regulating murine UL16-binding protein-like transcript (MULT)-1, a newly described NKG2D ligand. We show that MCMV infection strongly induces MULT-1 gene expression, but surface expression of this glycoprotein is nevertheless completely abolished by the virus. Screening a panel of MCMV deletion mutants defined the gene m145 as the viral regulator of MULT-1. The MCMV m145-encoded glycoprotein turned out to be necessary and sufficient to regulate MULT-1 by preventing plasma membrane residence of MULT-1. The importance of MULT-1 in NK cell regulation in vivo was confirmed by the attenuating effect of the m145 deletion that was lifted after NK cell depletion. Our findings underline the significance of escaping MULT-1/NKG2D signaling for viral survival and maintenance.


Sign in / Sign up

Export Citation Format

Share Document