scholarly journals 3D printing-directed flexible strain sensors of accordion-like architecture to achieve ultrastretchability with the assist of ultrasonic cavitation treatment

2021 ◽  
Vol 2085 (1) ◽  
pp. 012042
Author(s):  
Y F Qu ◽  
J H Ma ◽  
Y Q He ◽  
L Zhang ◽  
F C Ren ◽  
...  

Abstract A new class of accordion-like cellular architecture with sinusoidal struts is designed to enhance the planar stretchability of cellular solids, aiming to fabricate flexible strain sensors with ultrastretchability. The combination manufacturing process of fused deposition modeling (FDM) 3D printing technique and ultrasonic cavitation-enabled treatment was introduced into the fabrication of flexible strain sensors made of thermoplastic polyurethane (TPU) substrate and carbon nanotubes (CNTs). A negative Poisson’s ratio (NPR) architecture made of TPU was firstly 3D-printed by FDM. The ultrasonic cavitation treatment was then conducted on the soft auxetic structure immersing in CNTs liquid, aiming to embed the CNTs into the surface layer of the flexible TPU substrate with NPR configurations. Instead of 3D printing the TPU matrix composite after hybridization inside the matrix material, the hybrid manufacturing procedure can ensure that the intrinsic excellent mechanical properties of TPU are not embrittled. Besides, the sinusoidal struts in accordion-like cellular architectures offer a design route to extend the material property chart to achieve ultrahigh stretchability in lightweight 3D printable flexible polymers for the applications that require combined stretchability, lightweight, and energy absorption such as soft robotics, stretchable electronics, and wearable protection shields.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 792 ◽  
Author(s):  
Meshari Alsharari ◽  
Baixin Chen ◽  
Wenmiao Shu

In this research, we present the development of 3D printed, highly stretchable and sensitive strain sensors using Graphene based composites. Graphene, a 2D material with unique electrical and piezoresistive properties, has already been used to create highly sensitive strain sensors. In this new study, by co-printing Graphene based Polylactic acid (PLA) with thermoplastic polyurethane (TPU), a highly stretchable and sensitive strain sensor based on Graphene composites can be 3D printed for the first time in strain sensors. The fabrication process of all materials is fully compatible with fused deposition modeling (FDM) based 3D printing method, which makes it possible to rapidly prototype and manufacture highly stretchable and sensitive strain sensors. The mechanical properties, electrical properties, sensitivity of the 3D printed sensors will be presented.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2319 ◽  
Author(s):  
Qianqian Wang ◽  
Chencheng Ji ◽  
Lushan Sun ◽  
Jianzhong Sun ◽  
Jun Liu

As direct digital manufacturing, 3D printing (3DP) technology provides new development directions and opportunities for the high-value utilization of a wide range of biological materials. Cellulose nanofibrils (CNF) and polylactic acid (PLA) biocomposite filaments for fused deposition modeling (FDM) 3DP were developed in this study. Firstly, CNF was isolated by enzymatic hydrolysis combined with high-pressure homogenization. CNF/PLA filaments were then prepared by melt-extrusion of PLA as the matrix and CNF as the filler. Thermal stability, mechanical performance, and water absorption property of biocomposite filaments and 3D-printed objects were analyzed. Findings showed that CNF increased the thermal stability of the PLA/PEG600/CNF composite. Compared to unfilled PLA FDM filaments, the CNF filled PLA biocomposite filament showed an increase of 33% in tensile strength and 19% in elongation at break, suggesting better compatibility for desktop FDM 3DP. This study provided a new potential for the high-value utilization of CNF in 3DP in consumer product applications.


2020 ◽  
Vol 44 (1) ◽  
pp. 15-20
Author(s):  
Katarzyna Bulanda ◽  
Mariusz Oleksy ◽  
Rafał Oliwa ◽  
Grzegorz Budzik ◽  
Tadeusz Markowski

AbstractNew materials and filaments dedicated to 3D printing were obtained using the fused deposition modeling method, and the properties of the produced materials were investigated. Polylactide was used as a polymer base for the assays because of the desired properties of the polymer, mainly biodegradability, and the matrix was refilled by the addition of metallic nanofillers, such as bronze, copper, brass, and steel. For the composites obtained, mechanical properties were investigated to determine the dependence of the obtained results on the content and type of filler used and on the method of fabrication of the fittings. It was found that the additives present in the polymer matrix increased the fluidity of the material. The best results were obtained for the compositions with bronze and steel in which the mass flow rate was 72.97 and 79.99 g/10 min, respectively. The filled material that had lower hardness was measured by Rockwell and the impact strength was measured by Charpy. In addition, it was found that injection-molded parts obtained much better mechanical properties than those obtained by 3D printing.


Author(s):  
Cameron Hohimer ◽  
Nahal Aliheidari ◽  
Changki Mo ◽  
Amir Ameli

As the soft robotics industry continues to grow, the need for new materials and simplified manufacturing techniques are essential. Of interest is the development of highly flexible strain sensors that are easily integrated into these robotic components. Current strain sensing solutions using piezoresistive materials often involve complex fabrication techniques with multiple steps. Recent work by the authors has shown that thermoplastic polyurethane/multiwall carbon nanotubes (TPU/MWCNT) has good piezoresistive behavior and can be easily fabricated into strain sensors using Fused Deposition Modeling (FDM). This work expands upon that effort to characterize the mechanical properties of FDM-printed TPU/MWCNT as a function of the FDM processing parameters. In this study, the air gap, raster orientation, and MWCNT weight percent were varied and tensile tests performed. The stress-strain behavior, modulus of elasticity, and ultimate tensile strength (UTS) are compared to assess the influence of the processing conditions. Optical microscopy was also carried out to correlate the mechanical behavior to the printed mesostructures. The results show that with increased MWCNT content, the UTS decreased by as much at 47% for 2wt.%MWCNT, while the modulus of elasticity increased by 54%, compared to those of pure TPU. The results of this work provide an understanding of the mechanical performance in relation to the print parameters and sets the base to tune the mechanical properties of printed flexible functional nanocomposites.


2021 ◽  
pp. 089270572110625
Author(s):  
Ajay Jayswal ◽  
Sabit Adanur

Polylactic acid (PLA) and thermoplastic polyurethane (TPU) were mixed in different proportions and extruded through twin-screw and single-screw extruders to obtain composite filaments to be used for 3D printing with fused deposition modeling (FDM) method. The properties of the filaments were characterized using uniaxial tensile tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), rheology, polarized optical microscope (POM), and scanning electron microscope (SEM). 3D printed samples from composite filaments were tested using dynamic mechanical analysis (DMA). It was found that the tensile strength and modulus of the filaments decrease while elongation at break increases with the increasing TPU content in the composite. The analysis also showed a partial miscibility of the polymer constituents in the solution of composite filaments. Finally, a flexible structure, plain weave fabric, was designed and 3D printed using the composite filaments developed which proved that the filaments are well suited for 3D printing.


Author(s):  
Michael A. Luzuriaga ◽  
Danielle R. Berry ◽  
John C. Reagan ◽  
Ronald A. Smaldone ◽  
Jeremiah J. Gassensmith

Biodegradable polymer microneedle (MN) arrays are an emerging class of transdermal drug delivery devices that promise a painless and sanitary alternative to syringes; however, prototyping bespoke needle architectures is expensive and requires production of new master templates. Here, we present a new microfabrication technique for MNs using fused deposition modeling (FDM) 3D printing using polylactic acid, an FDA approved, renewable, biodegradable, thermoplastic material. We show how this natural degradability can be exploited to overcome a key challenge of FDM 3D printing, in particular the low resolution of these printers. We improved the feature size of the printed parts significantly by developing a post fabrication chemical etching protocol, which allowed us to access tip sizes as small as 1 μm. With 3D modeling software, various MN shapes were designed and printed rapidly with custom needle density, length, and shape. Scanning electron microscopy confirmed that our method resulted in needle tip sizes in the range of 1 – 55 µm, which could successfully penetrate and break off into porcine skin. We have also shown that these MNs have comparable mechanical strengths to currently fabricated MNs and we further demonstrated how the swellability of PLA can be exploited to load small molecule drugs and how its degradability in skin can release those small molecules over time.


2021 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Julius Krause ◽  
Laura Müller ◽  
Dorota Sarwinska ◽  
Anne Seidlitz ◽  
Malgorzata Sznitowska ◽  
...  

In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2601
Author(s):  
Yue Ba ◽  
Yu Wen ◽  
Shibin Wu

Recent innovations in 3D printing technologies and processes have influenced how landscape products are designed, built, and developed. In landscape architecture, reduced-size models are 3D-printed to replicate full-size structures. However, high surface roughness usually occurs on the surfaces of such 3D-printed components, which requires additional post-treatment. In this work, we develop a new type of landscape design structure based on the fused deposition modeling (FDM) technique and present a laser polishing method for FDM-fabricated polylactic acid (PLA) mechanical components, whereby the surface roughness of the laser-polished surfaces is reduced from over Ra 15 µm to less than 0.25 µm. The detailed results of thermodynamics and microstructure evolution are further analyzed during laser polishing. The stability and accuracy of the results are evaluated based on the standard deviation. Additionally, the superior tensile and flexural properties are examined in the laser-polished layer, in which the ultimate tensile strength (UTS) is increased by up to 46.6% and the flexural strength is increased by up to 74.5% compared with the as-fabricated components. Finally, a real polished landscape model is simulated and optimized using a series of scales.


Sign in / Sign up

Export Citation Format

Share Document