scholarly journals Influences of Pressure ratio and Fluid Temperature on overall Cooling Performances of Ribbed Channel with Film Holes

2021 ◽  
Vol 2087 (1) ◽  
pp. 012043
Author(s):  
Yi Li ◽  
Jianhua Wang ◽  
Xu Wang ◽  
Weilong Wu ◽  
Hang Su

Abstract The previous experiments of overall cooling performances were most conducted using simplified models and under the similar temperature ratio of mainstream to cooling air with real gas turbine operations, and ambient outlet pressure. To discuss the reliability of this type of experimental data, this paper exhibits two series of numerical simulations. Using a real E3 blade as model, which has two-pass rib-roughened channel with inclined film holes, numerical simulations are carried out at the same temperature ratio and pressure ratio, but different fluid temperatures including mainstream and cooling air, and different outlet pressure. The numerical results reveal two important conclusions: 1) At the same outlet pressure, the overall cooling effectiveness on PS is not sensitive to the fluid temperatures, but on SS in the region between two rows of film holes, a higher fluid temperature corresponds to a higher cooling effectiveness. 2) At the same pressure ratio of inlet to outlet, the overall cooling effectiveness on PS and SS is not sensitive to the outlet pressure and fluid temperature.

1980 ◽  
Vol 102 (4) ◽  
pp. 957-963 ◽  
Author(s):  
H. Hempel ◽  
R. Friedrich ◽  
S. Wittig

Extending data obtained from hot gas cascade measurements on the cooling effectiveness and profile loss coefficients of full coverage film-cooled blading, use is made of similarity considerations to determine the heat transfer characteristics under actual engine conditions. Of primary interest are stationary gas turbines. Calculations are made for a four-stage single shaft gas turbine with air preheat and common component efficiencies. As a representative result it is found that for a pressure ratio of π = 10 a relative cooling air flow of approximately 8 percent will be required in rising the temperature from 1173 to 1573 K. The resulting relative improvement of the thermal efficiency is 24 percent and that of the specific work about 70 percent.


Author(s):  
S. Venkatasubramanya ◽  
S. A. Vasudev ◽  
Sunil Chandel

High pressure turbine nozzle guide vane of a gas turbine engine, which operates at gas temperatures in excess of 1700 K, employs internal cooling, augmented convective cooling, impingement cooling and film cooling techniques to keep the vane in safe operating limits. Even though nozzle guide vanes are designed using heat transfer co-relations available in published papers and fundamental data, it is required to test the nozzle guide vane to ascertain the surface metal temperature and verify the adequacy of cooling. Adequacy of cooling is quantified by the term cooling effectiveness expressed and as percentage. The objective of the current work is to study the effect of gas to cooling air temperature ratio on cooling effectiveness. In the current study tests were first conducted to validate the test cascade in accordance with AGARD recommendations. Later tests were conducted to verify the constancy of cooling effectiveness across two gas temperatures and finally effect of gas to cooling air temperature ratio on cooling effectiveness was studied. The ratio was increased by a factor of 0.69 in leading edge and 0.72 in the trailing edge circuit and found that the cooling effectiveness remained constant.


2016 ◽  
Vol 846 ◽  
pp. 85-90 ◽  
Author(s):  
Mostafa Odabaee ◽  
Emilie Sauret ◽  
Kamel Hooman

The present study explores CFD analysis of a supercritical carbon dioxide (SCO2) radial-inflow turbine generating 100kW from a concentrated solar resource of 560oC with a pressure ratio of 2.2. Two methods of real gas property estimations including real gas equation of estate and real gas property (RGP) file - generating a required table from NIST REFPROP - were used. Comparing the numerical results and time consumption of both methods, it was shown that equation of states could insert a significant error in thermodynamic property prediction. Implementing the RGP table method indicated a very good agreement with NIST REFPROP while it had slightly more computational cost compared to the RGP table method.


Author(s):  
Chiyuki Nakamata ◽  
Yoji Okita ◽  
Takashi Yamane ◽  
Yoshitaka Fukuyama ◽  
Toyoaki Yoshida

Cooling effectiveness of an impingement cooling with array of racetrack-shaped impingement holes is investigated. Two types of specimens are investigated. One is a plain target plate and the other is a plate roughened with bump type elements. Sensitivity of relative location of bump to impingement hole on the cooling effectiveness is also investigated. Experiments are conducted under three different mainflow Reynolds numbers ranging from 2.6×105 to 4.7×105, with four different cooling air Reynolds numbers for each main flow condition. The cooling air Reynolds numbers are in the range from 1.2×103 to 1.3×104.


2021 ◽  
Author(s):  
Eva Alvarez-Regueiro ◽  
Esperanza Barrera-Medrano ◽  
Ricardo Martinez-Botas ◽  
Srithar Rajoo

Abstract This paper presents a CFD-based numerical analysis on the potential benefits of non-radial blading turbine for low speed-low pressure applications. Electric turbocompounding is a waste heat recovery technology consisting of a turbine coupled to a generator that transforms the energy left over in the engine exhaust gases, which is typically found at low pressure, into electricity. Turbines designed to operate at low specific speed are ideal for these applications since the peak efficiency occurs at lower pressure ratios than conventional high speed turbines. The baseline design consisted of a vaneless radial fibre turbine, operating at 1.2 pressure ratio and 28,000rpm. Experimental low temperature tests were carried out with the baseline radial blading turbine at nominal, lower and higher pressure ratio operating conditions to validate numerical simulations. The baseline turbine incidence angle effect was studied and positive inlet blade angle impact was assessed in the current paper. Four different turbine rotor designs of 20, 30, 40 and 50° of positive inlet blade angle are presented, with the aim to reduce the losses associated to positive incidence, specially at midspan. The volute domain was included in all CFD calculations to take into account the volute-rotor interactions. The results obtained from numerical simulations of the modified designs were compared with those from the baseline turbine rotor at design and off-design conditions. Total-to-static efficiency improved in all the non-radial blading designs at all operating points considered, by maximum of 1.5% at design conditions and 5% at off-design conditions, particularly at low pressure ratio. As non-radial fibre blading may be susceptible to high centrifugal and thermal stresses, a structural analysis was performed to assess the feasibility of each design. Most of non-radial blading designs showed acceptable levels of stress and deformation.


Author(s):  
Weilun Zhou ◽  
Qinghua Deng ◽  
Wei He ◽  
Zhenping Feng

The laminated cooling, also known as impingement-effusion cooling, is believed to be a promising gas turbine blade cooling technique. In this paper, conjugate heat transfer analysis was employed to investigate the overall cooling effectiveness and total pressure loss of the laminated cooling configuration. The pitch to film hole diameter ratio P/Df of 3, 4, 5, 6, combined with pitch to impingement hole diameter ratio P/Di of 4, 6, 8, 10, are studied at the coolant mass flux G of 0.5, 1.0, 1.5, 2.0 kg/(sm2bar) respectively. The results show that overall cooling effectiveness of laminated cooling configuration increases with the decreasing of P/Df and the increasing of the coolant mass flux in general. However P/Df smaller than 3 may leads to a serious blocking in first few film holes at low coolant mass flux. The large P/Di that makes the Mach number of impingement flow greater than 0.16 may cause unacceptable pressure loss. The increment of overall cooling effectiveness depends on the difference between the deterioration of external cooling and the enhancement of internal cooling. Pressure loss increases exponentially with P/Di and G, and it increases more slowly with P/Df that compared to P/Di and G. The mixing loss takes up the most pressure loss at low coolant mass flux. With the increasing of the whole pressure loss, the proportion of throttling loss and laminated loss becomes larger and finally takes up the most of the whole pressure loss. When the sum of throttling loss and laminated loss is greater than mixing loss, the increment of system pressure ratio is unreasonable that compared to the increment of overall cooling effectiveness.


Author(s):  
Arash Farahani ◽  
Peter Childs

Strip seals are used in gas turbine engines between two static elements or between components which do not move relative to each other, such as Nozzle Guide Vanes (NGVs). The key role of a strip seal between NGV segments is sealing between the flow through the main stream annulus and the internal air system, a further purpose is to limit the inter-segmental movements. In general the shape of the strip seal is a rectangular strip that fits into two slots in adjacent components. The minimum clearance required for static strip seals must be found by accounting for thermal expansion, misalignment, and application, to allow correct fitment of the strip seals. Any increase in leakage raises the cost due to an increase in the cooling air use, which is linked to specific fuel consumption, and it can also alter gas flow paths and performance. The narrow path within the seal assembly, especially the height has the most significant affect on leakage. The height range of the narrow path studied in this paper is 0.01–0.06 mm. The behaviour of the flow passing through the narrow path has been studied using CFD modelling and measurements in a bespoke rig. The CFD and experimental results show that normalized leakage flow increases with pressure ratio before reaching a maximum. The main aim of this paper is to provide new experimental data to verify the CFD modelling for static strip seals. The typical flow characteristics validated by CFD modelling and experiments can be used to predict the flow behaviour for future static strip seal designs.


1990 ◽  
Vol 112 (3) ◽  
pp. 477-487 ◽  
Author(s):  
N. V. Nirmalan ◽  
L. D. Hylton

This paper presents the effects of downstream film cooling, with and without leading edge showerhead film cooling, on turbine vane external heat transfer. Steady-state experimental measurements were made in a three-vane, linear, two-dimensional cascade. The principal independent parameters—Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio—were maintained over ranges consistent with actual engine conditions. The test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. The vane external heat transfer data obtained in this program indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The downstream film cooling process was shown to be a complex interaction of two competing mechanisms. The thermal dilution effect, associated with the injection of relatively cold fluid, results in a decrease in the heat transfer to the airfoil. Conversely, the turbulence augmentation, produced by the injection process, results in increased heat transfer to the airfoil. The data presented in this paper illustrate the interaction of these variables and should provide the airfoil designer and computational analyst with the information required to improve heat transfer design capabilities for film-cooled turbine airfoils.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Bai-Tao An ◽  
Jian-Jun Liu

The diffusion hole constructed on a slot-type cross section has the potential to obtain high film cooling performance. However, the end shape of the cross section can greatly affect film cooling characteristics. This study examined eight cases of diffusion slot holes with various cross-sectional end shapes. The comparison of the eight diffusion slot holes and a typical fan-shaped hole was performed with a flat plate model using a three-dimensional (3D) steady computational fluid dynamics (CFD) method. The rectangular cross section had an aspect ratio of about 3.4. The end shape variation can be described based on sidewall contraction location, size, and form. The simulations were performed under an engine-representative condition of mainstream inlet Mach number 0.3 and turbulence intensity 5.2%. The simulated results showed that a strip separation bubble caused by inlet “jetting effect” occurs near the downstream wall of the diffusion slot hole and interacts with the diffusion flow. The different end shape of the rectangular cross section leads to different sidewall static pressure and exit velocity profiles, thereby produces three cooling effectiveness patterns, single-peak, bipeak, and tripeak patterns. The tripeak pattern produces higher cooling effectiveness and relatively uniform film coverage. The structure with moderate contraction and smooth transition on two sides of the downstream wall favors creation of a tripeak pattern. Compared with the fan-shaped hole, the discharge coefficient of diffusion slot hole is slightly small in low pressure ratio range, the pressure loss ratio has little difference.


Author(s):  
Wenjing Zhao ◽  
Dapeng Hu ◽  
Peiqi Liu ◽  
Yuqiang Dai ◽  
Jiupeng Zou ◽  
...  

A pressure-exchange ejector transferring energy by compression and expansion waves has the potential for higher efficiency. The width and position of each port are essential in pressure-exchange ejector design. A dimensionless time τ expressing both port widths and the positions of port ends was introduced. A prototype was designed and the experimental system was set up. Many sets of experiment with different geometrical arrangements were conducted. The results suggest that the efficiency greatly changes with the geometrical arrangements. The efficiency is about 60% at proper port widths and positions, while at improper geometrical arrangements, the efficiency is much lower and the maximum deviation may reach about 20%. The proper dimensionless port widths and positions at different operating conditions are obtained. For a fixed overall pressure ratio, the widths of the high pressure flow inlet and middle pressure flow outlet increase as the outlet pressure increases and the low pressure flow inlet width is reduced with a larger outlet pressure. The middle pressure flow outlet (MO) opening end remains constant at different outlet pressures. The positions of the high pressure flow inlet (HI) closed end and the low pressure flow inlet (LI) open end increase with the elevation of outlet pressure, however, the distance between the HI closing end and the LI opening end is constant. The port widths and positions have a significant influence on the performance of the pressure-exchange ejector. The dimensionless data obtained are very valuable for pressure-exchange ejector design and performance optimization.


Sign in / Sign up

Export Citation Format

Share Document