scholarly journals Efficiency of Installation of an Additional Gas-Air Heat Exchanger When Operating a Steam Boiler on Gas and Liquid Fuel

2021 ◽  
Vol 2096 (1) ◽  
pp. 012011
Author(s):  
F Bakirov ◽  
E Ibragimov

Abstract The article presents the results of calculating the efficiency of reconstruction of the gas and air paths of a steam boiler when working on gas and liquid fuel due to the installation of additional gas-air heat exchangers. Due to the utilization of the thermal energy of the flue gases in the newly installed heat exchangers, the air is heated in front of the boiler air heaters and the fuel efficiency is increased by increasing the boiler efficiency. The increase in the efficiency of the "gross" boiler during the operation of the considered TGM-84 boiler on fuel oil with an average annual operating mode was 2.81 %. The flue gas temperature after the boiler air heaters was 178 °C, and the air temperature at the inlet to the air heaters was 99 °C at the average annual load of the boiler, which ensures an almost corrosion-free operation of the air heater packing. It is revealed that when the liquid fuel boilers, installation of new heat exchangers and their strapping on the side of the air and flue gas has a shorter payback period than the boiler gas fired. The simple payback period of the considered technical solution was 6,82 years when working on gas fuel and 1,35 years when working on liquid fuel.

2018 ◽  
Vol 245 ◽  
pp. 07014 ◽  
Author(s):  
Evgeny Ibragimov ◽  
Sergei Cherkasov

The article presents data on the calculated values of improving the efficiency of fuel use at the thermal power plant as a result of the introduction of a technical solution for cooling the flue gases of boilers to the lowest possible temperature under the conditions of safe operation of reinforced concrete and brick chimneys with a constant value of the flue gas temperature, when changing the operating mode of the boiler.


10.14311/1588 ◽  
2012 ◽  
Vol 52 (4) ◽  
Author(s):  
Tomáš Dlouhý ◽  
Tomáš Dupal ◽  
Jan Dlouhý

This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated.


2008 ◽  
Vol 595-598 ◽  
pp. 271-280 ◽  
Author(s):  
Florimonde Lebel ◽  
Christophe Rapin ◽  
Jean François Mareche ◽  
Renaud Podor ◽  
Xavier Chaucherie ◽  
...  

The efficiency of Waste-to-Energy (W-t-E) boilers is affected by fireside corrosion of the heat exchangers that involve unexpected shutdown of facilities for repairs and limit the increase of steam conditions used to produce electricity. The parameters governing fireside corrosion are various and mechanisms are very complex, nevertheless, they are relatively well documented in the literature. In this paper, a laboratory-scale corrosion pilot, which reproduces MSWI boilers conditions, is described. The specificity of our approach includes simultaneous simulation of the temperature gradient at flue-gas/tube interface, the velocity of flue-gas and ashes. Corrosion rates obtained on Tu37C carbon steel at a metal temperature equal to 400°C and a flue gas temperatures of 650°C and 850°C (1100 ppm HCl, 110 ppm SO2 and synthetic ashes free of heavy metals) are respectively around 1.6 2m/hour and 5.6 2m/hour. Preferential metal loss, attributed to erosion-corrosion phenomena, is also observed at low flue-gas temperature (T=650°C) on the face exposed at 90° to the flue-gas. The analysis of corrosion scales demonstrates the reproducibility of results and the reliability of corrosion mechanisms determined from experiments, with degradation observed similar to superheater tubes from EfW facilities. Thus, the corrosion pilot developed can be used as an accurate simulator of the environment encountered in MSWI.


2020 ◽  
Vol 14 (4) ◽  
pp. 7481-7497
Author(s):  
Yousef Najjar ◽  
Abdelrahman Irbai

This work covers waste energy utilization of the combined power cycle by using it in the candle raw material (paraffin) melting process and an economic study for this process. After a partial utilization of the burned fuel energy in a real bottoming steam power generation, the exhaust gas contains 0.033 of the initially burned energy. This tail energy with about 128 ºC is partly driven in the heat exchanger of the paraffin melting system. Ansys-Fluent Software was used to study the paraffin wax melting process by using a layered system that utilizes an increased interface area between the heat transfer fluid (HTF) and the phase change material (PCM) to improve the paraffin melting process. The results indicate that using 47.35 kg/s, which is 5% of the entire exhaust gas (881.33 kg/s) from the exit of the combined power cycle, would be enough for producing 1100 tons per month, which corresponds to the production quantity by real candle's factories. Also, 63% of the LPG cost will be saved, and the payback period of the melting system is 2.4 years. Moreover, as the exhaust gas temperature increases, the consumed power and the payback period will decrease.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2174
Author(s):  
Marta Marczak-Grzesik ◽  
Stanisław Budzyń ◽  
Barbara Tora ◽  
Szymon Szufa ◽  
Krzysztof Kogut ◽  
...  

The research presented by the authors in this paper focused on understanding the behavior of mercury during coal combustion and flue gas purification operations. The goal was to determine the flue gas temperature on the mercury emissions limits for the combustion of lignites in the energy sector. The authors examined the process of sorption of mercury from flue gases using fine-grained organic materials. The main objectives of this study were to recommend a low-cost organic adsorbent such as coke dust (CD), corn straw char (CS-400), brominated corn straw char (CS-400-Br), rubber char (RC-600) or granulated rubber char (GRC-600) to efficiently substitute expensive dust-sized activated carbon. The study covered combustion of lignite from a Polish field. The experiment was conducted at temperatures reflecting conditions inside a flue gas purification installation. One of the tested sorbents—tire-derived rubber char that was obtained by pyrolysis—exhibited good potential for Hg0 into Hg2+ oxidation, resulting in enhanced mercury removal from the flue. The char characterization increased elevated bromine content (mercury oxidizing agent) in comparison to the other selected adsorbents. This paper presents the results of laboratory tests of mercury sorption from the flue gases at temperatures of 95, 125, 155 and 185 °C. The average mercury content in Polish lignite was 465 μg·kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 17.8 µg·m−3. The study analyzed five low-cost sorbents with the average achieved efficiency of mercury removal from 18.3% to 96.1% for lignite combustion depending on the flue gas temperature.


2012 ◽  
Vol 455-456 ◽  
pp. 284-288
Author(s):  
Wei Li Gu ◽  
Jian Xiang Liu

this paper studies the typical irreversible processes such as combustion and heat transfer with temperature difference based on the theory of thermodynamics, analyzes the influencing factors on exergy loss in irreversible processes, on the basis of this analysis, proposes the energy-saving optimization measures on design and operation management of the organic heat transfer material heater, and specially points out that in the design process, objective function can be constructed with the exergy loss as evaluation index to determine the outlet flue gas temperature of furnace and the flue gas temperature, and provides theoretical basis for the determination of design parameters.


2014 ◽  
Vol 70 (7) ◽  
pp. 1285-1291 ◽  
Author(s):  
Jia-jia Deng ◽  
Liang-ming Pan ◽  
De-qi Chen ◽  
Yu-quan Dong ◽  
Cheng-mu Wang ◽  
...  

Aimed at cost saving and pollution reduction, a novel desulfurization wastewater evaporation treatment system (DWETS) for handling wet flue gas desulfurization (WFGD) wastewater of a coal-fired power plant was studied. The system's advantages include simple process, and less investment and space. The feasibility of this system has been proven and the appropriate position and number of nozzles, the spray droplet size and flue gas temperature limitation have been obtained by computational fluid dynamics (CFD) simulation. The simulation results show that a longer duct, smaller diameter and higher flue gas temperature could help to increase the evaporation rate. The optimal DWETS design of Shangdu plant is 100 μm droplet sprayed by two nozzles located at the long duct when the flue gas temperature is 130 °C. Field tests were carried out based on the simulation results. The effects of running DWETS on the downstream devices have been studied. The results show that DWETS has a positive impact on ash removal efficiency and does not have any negative impact on the electrostatic precipitator (ESP), flue gas heat exchanger and WFGD. The pH values of the slurry of WFGD slightly increase when the DWETS is running. The simulation and field test of the DWETS show that it is a feasible future technology for desulfurization wastewater treatment.


Author(s):  
Junxiang Guo ◽  
Lingling Zhang ◽  
Daqiang Cang ◽  
Liying Qi ◽  
Wenbin Dai ◽  
...  

Abstract In this study, a novel swirl combustion modified device for steel slag was designed and enhanced with the objective of achieving highly efficient and clean coal combustion and also for achieving the whole elements utilization of coal. Coal ash and steel slag were melted in the combustion chamber and subsequently entered the slag chamber. The detrimental substances solidified and formed crystals, which allowed for the comprehensive utilization of the ash and slag. Our experiments mainly aimed to mitigate the formation of NOx, while using the heat and slag simultaneously during the coal combustion without a combustion efficiency penalty. The increase in the device’s energy efficiency and reduction in the NOx emissions are important requirements for industrialization. The experiments were carried out in an optimized swirling combustion device, which had a different structure and various coal feeding conditions in comparison to previously reported devices. The fuel-staged and non-staged combustion experiments were compared under different coal ratios (bitumite:anthracite). For the fuel-staged combustion experiments, the NOx concentration in the flue gas was observed to decrease significantly when the coal ratio of 1:1, an excess air coefficient of 1.2, and a fuel-staged ratio of 15:85 were used. Under these conditions, the flue gas temperature was as high as 1,620°C, while the NOx concentration was as low as 320 mg/m3 at 6 % O2. The air-surrounding-fuel structure that formed in the furnace was very beneficial in reducing the formation of NOx. In comparison to other types of coal burners, the experimental combustion device designed in this study achieved a significant reduction of NOx emissions (approximately 80 %).


Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


Author(s):  
Aleksei S. Tikhonov ◽  
Andrey A. Shvyrev ◽  
Nikolay Yu. Samokhvalov

One of the key factors ensuring gas turbine engines (GTE) competitiveness is improvement of life, reliability and fuel efficiency. However fuel efficiency improvement and the required increase of turbine inlet gas temperature (T*g) can result in gas turbine engine life reduction because of hot path components structural properties deterioration. Considering circumferential nonuniformity, local gas temperature T*g can reach 2500 K. Under these conditions the largest attention at designing is paid to reliable cooling of turbine vanes and blades. At present in design practice and scientific publications comparatively little attention is paid to detailed study of turbine split rings thermal condition. At the same time the experience of modern GTE operation shows high possibility of defects occurrence in turbine 1st stage split ring. This work objective is to perform conjugate numerical simulation (gas dynamics + heat transfer) of thermal condition for the turbine 1st stage split ring in a modern GTE. This research main task is to determine the split ring thermal condition by defining the conjugate gas dynamics and heat transfer result in ANSYS CFX 13.0 package. The research subject is the turbine 1st stage split ring. The split ring was simulated together with the cavity of cooling air supply from vanes through the case. Besides turbine 1st stage vanes and blades have been simulated. Patterns of total temperature (T*Max = 2000 °C) and pressure and turbulence level at vanes inlet (19.2 %) have been defined based on results of calculating the 1st stage vanes together with the combustor. The obtained results of numerical simulation are well coherent with various experimental studies (measurements of static pressure and temperature in supply cavity, metallography). Based on the obtained performance of the split ring cooling system and its thermal condition, the split ring design has been considerably modified (one supply cavity has been split into separate cavities, the number and arrangement of perforation holes have been changed etc.). All these made it possible to reduce considerably (by 40…50 °C) the split ring temperature comparing with the initial design. The design practice has been added with the methods which make it possible to define thermal condition of GTE turbine components by conjugating gas dynamics and heat transfer problems and this fact will allow to improve the designing level substantially and to consider the influence of different factors on aerodynamics and thermal state of turbine components in an integrated programming and computing suite.


Sign in / Sign up

Export Citation Format

Share Document