scholarly journals Statistical analysis of cutting tool wear in machining centers

2021 ◽  
Vol 2139 (1) ◽  
pp. 012019
Author(s):  
J H Arévalo-Ruedas ◽  
E Espinel-Blanco ◽  
E Florez-Solano

Abstract Cutting tools have great use in the industry for their great effectiveness at the time of use, but it is important to know what the proper use is, because the misuse or constant use of such tools, can cause excessive wear and tear that will reduce tool life. There are different methods and equations to measure the useful life of the tool, it is important to know its state so that at the time of being used in a machining process does not cause irreversible damage to the part. One of the most well-known equations is the Taylor equation where they relate useful lifetime to cutting speed. This project was developed in order to demonstrate, by means of equations and graphs, the lifetime and wear of the cutting tools, as well as the application of statistical equations that allow the analysis of the results obtained in the laboratory; a statistical study was able to evaluate the wear on the cutting tool, obtaining statistically the useful life of the tool in each machining process and calculate in the same way the total useful life of the tool.

2014 ◽  
Vol 616 ◽  
pp. 292-299
Author(s):  
Ján Duplák ◽  
Peter Michalik ◽  
Miroslav Kormoš ◽  
Slavko Jurko ◽  
Pavel Kokuľa ◽  
...  

Durability of cutting tools represent to a large spectral index on the basis of which is characterized by functional work. Every manufacturer of cutting tools before the actual production of these tools during the development make a tests and prescribing them characteristics on which is possible then to predict their behavior in the actual production process. It might be argued, that these information are optimized and ideal and therefore the information which producers sells by these cutting tools, do not correspond completely with their real behavior. It is necessary that information by using experiments to verify and then review their informative value and correctness. Durability of cutting tools is often indicated for one tested material of marketing aspect, which is machined and effort of user is to achieve this variable for other machined materials, then is happened problem in the production. The problem is very short lifetime of cutting tool in machining process, where the effect is impossibility to optimize the machining process. The results of this action are excesses time caused by exchanged of cutting plate and then it is make a low production of machining industry by setting of machines, and then the factory has an economical loses. This article is focused on tested of cutting tools made by sintered carbide, where the machine material is steel 100CrMn6. This type of steel is used by manufacturer of bearings, therefore the experimental part of this article should be a helper for machining manufactures, which make effectively manage with tools by optimization of cutting parameters of cutting tools and thus increase their productivity and to achieve a higher profits.


2011 ◽  
Vol 672 ◽  
pp. 319-322 ◽  
Author(s):  
Mustafa Günay ◽  
Ulvi Şeker

MMCs components are mostly produced using near net shape manufacturing methods and are subsequently machined to the final dimensions and surface finishes. The MMCs consist of extremely hard reinforcing particles and pose considerable challenges due to the poor machinability and severe wear of the cutting tool. In this study, cutting performance of WC, CBN and PCD cutting tools were investigated with respect to surface roughness during machining of 10 wt % SiCp reinforced Al-Si alloy matrix composites produced by powder metallurgy (PM) method. Average surface roughness (Ra) corresponding to each machining condition was measured. After the machining process the worn insert tips were examined under the scanning electron microscope (SEM). Chip geometry and machined surface photographs have been taken by optical microscopy. The experimental results showed that surface roughness decreased with increasing cutting speed for all of cutting tool materials. The best surface integrity was occurred after the machining with PCD insert at the highest cutting speed employed.


2015 ◽  
Vol 669 ◽  
pp. 294-301
Author(s):  
Ján Duplák ◽  
Jozef Zajac ◽  
Zuzana Hutyrová ◽  
Miroslav Kormoš ◽  
Andrej Czán ◽  
...  

Precision machining is currently intensively studied. Production of quality products fast, and precise with paying attention on environmental issues, brings many factors which counteracts to ensure these aspects. Is very crucial to know system machine – tool – workpiece and is necessary to characterize all elements and limitations connected with this system. Choice of suitable cutting tools is very important part of production process. Acquisition cost of tools in serial production is only below 10 % but in medium production can be up to 50 % of production cost. Know the characteristic of the tool is very important to ensure effective machining process and economic stability of whole production process. The article is focused on clarification of basic indicators, which should be used to more effective and more economical handling with cutting tools.


POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 26
Author(s):  
Sobron Y. Lubis ◽  
Sofyan Djamil ◽  
Adianto Adianto ◽  
Amor Santosa ◽  
Edric VM.

In the machining process, increased production can be done by increasing the use of cuttingparameters. However, the use of high cutting parameters has an effect on the wear of the cutting toolused. The aim of this research is to analyze the wear and tear that occurs on cutting tools and tool lifewhen cutting AISI 4140 steel by using variations in cutting speed. The machining process uses a CNClathe by turning the surface of the AISI 4140 steel workpiece. The wear criteria are determined when thecutting tool has reached the edge wear limit (VB) of 0.3 mm. Observation and measurement of carbidecutting tools are carried out every 5 minutes the machining process is carried out. If the cutting tool hasnot shown the specified wear value, then the cutting tool then cuts, so that the wear value is obtained.From the research conducted it was found that at a cutting speed of 160 m / min the cutting tool iscapable of cutting for 39 minutes, 13 seconds. At a cutting speed of 180 m / min the cutting tool is capableof cutting for 38 minutes, 14 seconds. At a cutting speed of 200 m / min the cutting tool is capable ofcutting for 33 minutes, 8 seconds. At a cutting speed of 240 m / min the cutting tool is capable of cuttingfor 26 minutes, 3 seconds. Taylor's advanced tool life for the coated carbide cutting tool in turning AISI4140 steel material is: Vc. Tl.0.073 = 8203.


2013 ◽  
Vol 716 ◽  
pp. 254-260 ◽  
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Karol Vasilko

Technical practice uses a lot of cutting tools made of different materials. According to selecting workpiece have to be defined technological conditions. For all selected technological conditions is important prescribe parameters for machining. The basic parameters for every cutting process are cutting speed, feed and cutting depth. These technological conditions are defined by means of calculation or by means of mechanical engineering tables. Specification of tool wear by means of calculation is very difficult. Very important cutting tool property is its durability. Durability of cutting tool defines lifetime of this cutting tool and it determines its suitability for select technological operation. Technical science defines a lot of different factors, that they may be cause of shorter cutting tool lifetime. For increase cutting tool durability is necessary maximally possible elimination of these factors. Determination of cutting tool durability is very important, because provides comprehensive information how to determine appropriate technological conditions for selected cutting tool. In engineering is for determination of cutting tools durability used T-vc dependence. The article describes process how to create the durability dependence for cutting tool made of cutting ceramic (Al2O3) by means of T-vc dependence in machining process of C45.


2021 ◽  
Vol 11 (11) ◽  
pp. 5011
Author(s):  
Yuanxing Huang ◽  
Zhiyuan Lu ◽  
Wei Dai ◽  
Weifang Zhang ◽  
Bin Wang

In manufacturing, cutting tools gradually wear out during the cutting process and decrease in cutting precision. A cutting tool has to be replaced if its degradation exceeds a certain threshold, which is determined by the required cutting precision. To effectively schedule production and maintenance actions, it is vital to model the wear process of cutting tools and predict their remaining useful life (RUL). However, it is difficult to determine the RUL of cutting tools with cutting precision as a failure criterion, as cutting precision is not directly measurable. This paper proposed a RUL prediction method for a cutting tool, developed based on a degradation model, with the roughness of the cutting surface as a failure criterion. The surface roughness was linked to the wearing process of a cutting tool through a random threshold, and accounts for the impact of the dynamic working environment and variable materials of working pieces. The wear process is modeled using a random-effects inverse Gaussian (IG) process. The degradation rate is assumed to be unit-specific, considering the dynamic wear mechanism and a heterogeneous population. To adaptively update the model parameters for online RUL prediction, an expectation–maximization (EM) algorithm has been developed. The proposed method is illustrated using an example study. The experiments were performed on specimens of 7109 aluminum alloy by milling in the normalized state. The results reveal that the proposed method effectively evaluates the RUL of cutting tools according to the specified surface roughness, therefore improving cutting quality and efficiency.


2014 ◽  
Vol 551 ◽  
pp. 221-227
Author(s):  
Zhi Qiang Zhang ◽  
Tie Qiang Gang ◽  
Yi Kai Yi

In this paper, based on finite element simulation software AdvantEdge, the effects of different coating materials and thickness on the wear of cutting tools during the machining process have been studied. For the tools with coating materials of TiAlN, Al2O3, TiN, TiC, we can calculate the wear rate according to the Usui mathematical model of tool wear, and then consider thickness factor of TiC coating. Because of the lowest thermal conductivity, the workpiece cut by TiC coated tool will soften first and more over cutting time, it result in the lowest wear rate. And with the increase of coating thickness, the effect of "thermal barrier" is more obvious for the relatively thicker coating tool, but the relative sliding velocity between the chip and tool is increasing meanwhile, so a suitable coating thickness is necessary.


1984 ◽  
Vol 30 (104) ◽  
pp. 77-81 ◽  
Author(s):  
D.K. Lieu ◽  
C.D. Mote

AbstractThe cutting force components and the cutting moment on the cutting tool were measured during the orthogonal machining of ice with cutting tools inclined at negative rake angles. The variables included the cutting depth (< 1 mm), the cutting speed (0.01 ms−1to 1 ms−1), and the rake angles (–15° to –60°). Results of the experiments showed that the cutting force components were approximately independent of cutting speed. The resultant cutting force on the tool was in a direction approximately normal to the cutting face of the tool. The magnitude of the resultant force increased with the negative rake angle. Photographs of ice-chip formation revealed continuous and segmented chips at different cutting depths.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 623 ◽  
Author(s):  
Dervis Ozkan ◽  
Peter Panjan ◽  
Mustafa Sabri Gok ◽  
Abdullah Cahit Karaoglanli

Carbon fiber-reinforced polymers (CFRPs) have very good mechanical properties, such as extremely high tensile strength/weight ratios, tensile modulus/weight ratios, and high strengths. CFRP composites need to be machined with a suitable cutting tool; otherwise, the machining quality may be reduced, and failures often occur. However, as a result of the high hardness and low thermal conductivity of CFRPs, the cutting tools used in the milling process of these materials complete their lifetime in a short cycle, due to especially abrasive wear and related failure mechanisms. As a result of tool wear, some problems, such as delamination, fiber breakage, uncut fiber and thermal damage, emerge in CFRP composite under working conditions. As one of the main failure mechanisms emerging in the milling of CFRPs, delamination is primarily affected by the cutting tool material and geometry, machining parameters, and the dynamic loads arising during the machining process. Dynamic loads can lead to the breakage and/or wear of cutting tools in the milling of difficult-to-machine CFRPs. The present research was carried out to understand the influence of different machining parameters on tool abrasion, and the work piece damage mechanisms during CFRP milling are experimentally investigated. For this purpose, cutting tests were carried out using a (Physical Vapor Deposition) PVD-coated single layer TiAlN and TiN carbide tool, and the abrasion behavior of the coated tool was investigated under dry machining. To understand the wear process, scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDS) was used. As a result of the experiments, it was determined that the hard and abrasive structure of the carbon fibers caused flank wear on TiAlN- and TiN-coated cutting tools. The best machining parameters in terms of the delamination damage of the CFRP composite were obtained at high cutting speeds and low feed rates. It was found that the higher wear values were observed at the TiAlN-coated tool, at the feed rate of 0.05 mm/tooth.


Sign in / Sign up

Export Citation Format

Share Document