scholarly journals Greening-induced increase in evapotranspiration over Eurasia offset by CO2-induced vegetational stomatal closure

Author(s):  
Xuanze Zhang ◽  
Yongqiang Zhang ◽  
Ning Ma ◽  
Dongdong Kong ◽  
Jing Tian ◽  
...  

Abstract Evapotranspiration (ET), as a key exchanging component of the land energy, water and carbon cycles, is expected to increase in response to greening land under a warming climate. However, the relative importance of major drivers (e.g., leaf area index (LAI), climate forcing, atmospheric CO2, etc.) to long-term ET change remain largely unclear. Focusing on the Eurasia which experienced the strong vegetational greening, we aim to estimate the long-term ET trend and its drivers’ relative contributions by applying a remote sensing-based water-carbon coupling model─Penman-Monteith-Leuning version 2 (PML-V2) driven by observational climate forcing and CO2 records, and satellite-based LAI, albedo and emissivity. The PML-V2 estimated an increasing ET trend (6.20 ±1.13 mm year-1 decade-1, p < 0.01) over Eurasia during 1982-2014, which is close to the ensemble mean (6.51 ±3.10 mm year-1 decade-1) from other three ET products (GLEAMv3.3a, ERA5 and CRv1.0). The PML-based ET overall agrees well with water-balance derived ET in detecting the trend directions. We find that the Eurasian ET increasing trend was mostly from vegetated regions over central and eastern Europe, Indian and southeast China where ET trends were larger than 20 mm year-1 decade-1. Modeling sensitivity experiments indicate that the Eurasian ET trend was mainly dominated by positive contributions from climate forcing change (40%) and increased LAI (22%), but largely offset by a negative contribution of increased CO2 (26%). Our results highlight the importance of the suppression effect of increasing CO2-induced stomatal closure on transpiration. This effect was rarely considered in diagnostic ET products but plays a key role to ensure that the long-term ET trend should not be overestimated by only accounting for greening-induced increases in transpiration and rainfall interception.

2021 ◽  
Vol 264 ◽  
pp. 107022
Author(s):  
Minna Väliranta ◽  
Maija E. Marushchak ◽  
Juha-Pekka Tuovinen ◽  
Annalea Lohila ◽  
Christina Biasi ◽  
...  

2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


1997 ◽  
Vol 6 (2) ◽  
pp. 130-139 ◽  
Author(s):  
JURGEN ALHEIT ◽  
EBERHARD HAGEN
Keyword(s):  

2014 ◽  
Vol 21 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Bryan A. Black ◽  
Jason B. Dunham ◽  
Brett W. Blundon ◽  
Jayne Brim-Box ◽  
Alan J. Tepley

2013 ◽  
pp. 101-105
Author(s):  
Enikő Vári

The experiments were carried out at the Látókép experimental station of the University of Debrecen on chernozem soil in a long term winter wheat experiment in the season of 2011 and 2012 in triculture (pea-wheat-maize) and biculture (wheat-maize) at three fertilisation levels (control, N50+P35K40, N150+P105K120). Two different cropyears were compared (2011 and 2012). The research focused on the effects of forecrop and fertilisation on the Leaf Area Index, SPAD values and the amount of yield in two different cropyears. We wanted to find out how the examined parameters were affected by the cropyear and what the relationship was between these two parameters and the changes of the amount of yield. Examining the effects of growing doses of fertilizers applied, results showed that yields increased significantly in both rotations until the N150+PK level in 2011 and 2012. By comparing the two years, results show that in 2011 there was a greater difference in yields between the rotations (7742 kg ha-1 at N150+PK in the biculture and 9830 kg ha-1 at N150+PK in the triculture). Though wheat yields following peas were greater in 2012, results equalized later on at N150+PK levels (8109–8203 kg ha-1). Due to the favorable agrotechnical factors, the leaf and the effects of the treatments grown to a great extent in 2011, while in 2012 the differences between treatments were moderate. Until the N150+PK level, nitrogen fertilisation had a notable effect on the maximum amount of SPAD values (59.1 in the case of the biculture and 54.0 in the triculture). The highest SPAD values were measured at the end of May (during the time of flowering and grain filling) in the biculture. In the triculture, showed high SPAD values from the beginning. The same tendency could be observed in the 2012 cropyear, although increasing doses of fertilizers resulted in higher SPAD values until N150+PK level only from the second measurement. Maximum SPAD values were reached at the end of May in both crop rotation system


2020 ◽  
Vol 13 (12) ◽  
pp. 6029-6050
Author(s):  
Huilin Huang ◽  
Yongkang Xue ◽  
Fang Li ◽  
Ye Liu

Abstract. Fire is one of the primary disturbances to the distribution and ecological properties of the world's major biomes and can influence the surface fluxes and climate through vegetation–climate interactions. This study incorporates a fire model of intermediate complexity to a biophysical model with dynamic vegetation, SSiB4/TRIFFID (The Simplified Simple Biosphere Model coupled with the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model). This new model, SSiB4/TRIFFID-Fire, updating fire impact on the terrestrial carbon cycle every 10 d, is then used to simulate the burned area during 1948–2014. The simulated global burned area in 2000–2014 is 471.9 Mha yr−1, close to the estimate of 478.1 Mha yr−1 in Global Fire Emission Database v4s (GFED4s), with a spatial correlation of 0.8. The SSiB4/TRIFFID-Fire reproduces temporal variations of the burned area at monthly to interannual scales. Specifically, it captures the observed decline trend in northern African savanna fire and accurately simulates the fire seasonality in most major fire regions. The simulated fire carbon emission is 2.19 Pg yr−1, slightly higher than the GFED4s (2.07 Pg yr−1). The SSiB4/TRIFFID-Fire is applied to assess the long-term fire impact on ecosystem characteristics and surface energy budget by comparing model runs with and without fire (FIRE-ON minus FIRE-OFF). The FIRE-ON simulation reduces tree cover over 4.5 % of the global land surface, accompanied by a decrease in leaf area index and vegetation height by 0.10 m2 m−2 and 1.24 m, respectively. The surface albedo and sensible heat are reduced throughout the year, while latent heat flux decreases in the fire season but increases in the rainy season. Fire results in an increase in surface temperature over most fire regions.


1990 ◽  
Vol 14 ◽  
pp. 358-358
Author(s):  
Mary Jo Spencer ◽  
Paul A. Mayewski ◽  
W. Berry Lyons ◽  
Mark S. Twickler ◽  
Pieter Grootes

In 1984 a 200-m ice core was collected from a local accumulation basin in the Dominion Range, Transantarctic Mountains, Antarctica. A complete oxygen isotope record has been obtained and a considerable portion of the core has been analyzed in detail for chloride, nitrate, sulfate, and sodium. About half of the chloride is due to sea salt with the remainder originating as gaseous HCl. Nitrate levels have increased markedly over the last 1000 years whereas the levels of the other constituents have remained fairly constant.The oxygen isotope results suggest that this region of Antarctica is responding to long-term global climate forcing as well as to shorter-term climatic variations. This data will be compared with the anion and sodium records in order to determine the effects of climatic forcing on these other records. In particular, nitrate appears to vary in concert with fluctuations in long-term climate. Additionally, variations in each constituent over the 3500 year period will be examined in detail to determine the influence of other processes which affect their concentrations.


2022 ◽  
Vol 505 ◽  
pp. 119943
Author(s):  
Rao-Qiong Yang ◽  
Fan Zhao ◽  
Ze-Xin Fan ◽  
Shankar Panthi ◽  
Pei-Li Fu ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 397 ◽  
Author(s):  
Giovanni Sgubin ◽  
Didier Swingedouw ◽  
Iñaki García de Cortázar-Atauri ◽  
Nathalie Ollat ◽  
Cornelis van Leeuwen

A comprehensive analysis of all the possible impacts of future climate change is crucial for strategic plans of adaptation for viticulture. Assessments of future climate are generally based on the ensemble mean of state-of-the-art climate model projections, which prefigures a gradual warming over Europe for the 21st century. However, a few models project single or multiple O(10) year temperature drops over the North Atlantic due to a collapsing subpolar gyre (SPG) oceanic convection. The occurrence of these decadal-scale “cold waves” may have strong repercussions over the continent, yet their actual impact is ruled out in a multi-model ensemble mean analysis. Here, we investigate these potential implications for viticulture over Europe by coupling dynamical downscaled EUR-CORDEX temperature projections for the representative concentration pathways (RCP)4.5 scenario from seven different climate models—including CSIRO-Mk3-6-0 exhibiting a SPG convection collapse—with three different phenological models simulating the main developmental stages of the grapevine. The 21st century temperature increase projected by all the models leads to an anticipation of all the developmental stages of the grapevine, shifting the optimal region for a given grapevine variety northward, and making climatic conditions suitable for high-quality wine production in some European regions that are currently not. However, in the CSIRO-Mk3-6-0 model, this long-term warming trend is suddenly interrupted by decadal-scale cold waves, abruptly pushing the suitability pattern back to conditions that are very similar to the present. These findings are crucial for winemakers in the evaluation of proper strategies to face climate change, and, overall, provide additional information for long-term plans of adaptation, which, so far, are mainly oriented towards the possibility of continuous warming conditions.


Sign in / Sign up

Export Citation Format

Share Document