scholarly journals Selection of unmanned aerial vehicles equipped with electric field sensors for detecting deteriorated insulators

2021 ◽  
Vol 714 (2) ◽  
pp. 022064
Author(s):  
Yaowen Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Mustafa Hamurcu ◽  
Tamer Eren

The unmanned systems have been seeing a significant boom in the last ten years in different areas together with technological developments. One of the unmanned systems is unmanned aerial vehicles (UAVs). UAVs are used for reconnaissance and observation in the military areas and play critical role in attack and destroy missions. These vehicles have been winning more features together with developing technology in todays world. In addition, they have been varying with different features. A systematic and efficient approach for the selection of the UAV is necessary to choose a best alternative for the critical tasks under consideration. The multicriteria decision-making (MCDM) approaches that are analytic processes are well suited to deal intricacy in selection of alternative vehicles. This study also proposes an integrated methodology based on the analytic hierarch process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) to evaluate UAV alternatives for selection process. Firstly, AHP, a MCDM method, is used to determine the weights of each critical factor. Subsequently, it is utilized with the TOPSIS approach to rank the vehicle alternatives in the decision problem. Result of the study shows that UAV-1 was selected as the most suitable vehicle. In results, it is seen that the weights of the evaluation criteria found by using AHP affect the decision-making process. Finally, the validation and sensitivity analysis of the solution are made and discussed.


Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 71
Author(s):  
Victor Gomez ◽  
Nicolas Gomez ◽  
Jorge Rodas ◽  
Enrique Paiva ◽  
Maarouf Saad ◽  
...  

Unmanned aerial vehicles (UAVs) are affordable these days. For that reason, there are currently examples of the use of UAVs in recreational, professional and research applications. Most of the commercial UAVs use Px4 for their operating system. Even though Px4 allows one to change the flight controller structure, the proportional-integral-derivative (PID) format is still by far the most popular choice. A selection of the PID controller parameters is required before the UAV can be used. Although there are guidelines for the design of PID parameters, they do not guarantee the stability of the UAV, which in many cases, leads to collisions involving the UAV during the calibration process. In this paper, an offline tuning procedure based on the multi-objective particle swarm optimization (MOPSO) algorithm for the attitude and altitude control of a Px4-based UAV is proposed. A Pareto dominance concept is used for the MOPSO to find values for the PID comparing parameters of step responses (overshoot, rise time and root-mean-square). Experimental results are provided to validate the proposed tuning procedure by using a quadrotor as a case study.


2007 ◽  
Vol 111 (1120) ◽  
pp. 345-358
Author(s):  
A. Maneschijn ◽  
T. Jones ◽  
T. W. von Backström ◽  
L. A. Ingham

Abstract Various programmes are underway internationally to establish legislative instruments for regulating civil and military unmanned aerial vehicles and systems. An analysis of a selection of these programmes revealed that the approaches used for airworthiness regulation are not harmonised and are usually limited to specific unmanned aerial vehicle types, indicating the need for a generic framework for airworthiness requirements. A functional Reference Framework for unmanned aerial vehicle and system airworthiness requirements was developed using Annex 8 of the Chicago Convention as a reference basis, supplemented with airworthiness procedures and functional requirements derived from manned aircraft regulations, unmanned aerial vehicle and system airworthiness material, and flightworthiness guidelines for reusable launch vehicles. Various airworthiness elements were identified for which further research is required to develop appropriate airworthiness requirements. This paper summarises the development of the framework and proposes the Reference Framework as a functional basis for generating comprehensive South African civil and military airworthiness requirements for unmanned aerial vehicles and systems.


2017 ◽  
pp. 41-52
Author(s):  
Maciej Miszczak

The paper presents results of scrutinising through foreign patent publications on warheads integrated in wing unmanned aerial vehicles (UAV) concerning especially the types and designs of warheads and their location against the onboard systems of recognition and target guidance and also against the systems controlling the status and operation of warheads. The review and analysis of patent publications was completed by a selection of patent descriptions [2-11] of 10 inventions on the subject matter committed in Israel, Germany, USA and UK between 1979 and 2011.


2021 ◽  
Vol 11 (11) ◽  
pp. 5209
Author(s):  
Cinzia Amici ◽  
Federico Ceresoli ◽  
Marco Pasetti ◽  
Matteo Saponi ◽  
Monica Tiboni ◽  
...  

The design of the propulsion system for Unmanned Aerial Vehicles (UAVs) demands an inclusive multidisciplinary approach from the earliest design phases, since every design choice strictly affects and is affected by the overall working conditions. This paper presents a review of the scientific literature focused on the design methods applied in defining and sizing the propulsion system of drones. The analysis, performed with a systematic approach, evaluated 123 papers according to two custom classification taxonomies, which investigated respectively the primary aim and specific content of the works. Finally, literature indications and hints were combined into an integrated framework for the functional design of the propulsion system of UAVs. The procedure aimed to support the designer in the preliminary selection of the propulsion candidates and the quick sizing of the supply system, during the first phases of the design process. According to the literature, design methods dramatically change depending on the expected applications and working conditions of UAVs, so that the detailed design of specific drone elements and propulsion components represents the focus of most of the papers in this field.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2575
Author(s):  
Jan M. Kelner ◽  
Cezary Ziółkowski

This paper focused on assessing the effectiveness of the signal Doppler frequency (SDF) method to locate a mobile emitter using a swarm of unmanned aerial vehicles (UAVs). Based on simulation results, we showed the impact of various factors such as the number of UAVs, the movement parameters of the emitter and the sensors on location effectiveness. The study results also showed the dependence of the accuracy and continuity of the emitter coordinate estimation on the type of propagation environment, which was determined by line-of-sight (LOS) or non-LOS (NLOS) conditions. The applied research methodology allowed the selection of parameters of the analyzed location system that would minimize the error and maximize the monitoring time of the emitter position.


Sign in / Sign up

Export Citation Format

Share Document